Patents by Inventor Steven Cheng

Steven Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138665
    Abstract: An imaging system, optionally an intra-oral camera, includes a blue light source and a barrier filter over a camera sensor. Optionally, the imaging system can also take white light images. Optionally, the system includes positively charged nanoparticles with fluorescein. The fluorescent nanoparticles can be identified on an image of a tooth by machine vision or machine learning algorithms on a pixel level basis. Either white light or fluorescent images can be used, with machine learning or artificial intelligence algorithms, to score the lesions. However, the white light image is not useful for determining whether lesions, particularly ICDAS 0-2 lesions, are active or inactive. A fluorescent image, with the fluorescent nanoparticles, can be used to detect and score active lesions. Optionally using a white light image and a fluorescent image together allows for all lesions, active and inactive, to be located and scored, and for their activity to be determined.
    Type: Application
    Filed: March 4, 2022
    Publication date: May 2, 2024
    Inventors: Kai Alexander JONES, Nathan A. JONES, Steven BLOEMBERGEN, Scott Raymond PUNDSACK, Yu Cheng LIN, Helmut NEHER, JR.
  • Patent number: 11962296
    Abstract: Disclosed herein is a flexible sensing interface, comprising: a sensor, comprising: a core; an inner electrode in the form of a conductive material in contact with the core; an inner dielectric material substantially encasing the inner electrode; an outer electrode in the form of a conductive material in contact with the inner dielectric material and in electrical communication with the inner electrode; and an outer dielectric material substantially encasing the outer electrode; wherein the inner dielectric material and the outer dielectric material comprise an elastic material. Also disclosed herein are systems and methods for making and using the same.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: April 16, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Seyedeh Fereshteh Shahmiri, Chaoyu Chen, Gregory D. Abowd, Shivan Mittal, Thad Eugene Starner, Yi-Cheng Wang, Zhong Lin Wang, Dingtian Zhang, Steven L. Zhang, Anandghan Waghmare
  • Patent number: 11856392
    Abstract: Methods, systems, and devices are described for concurrently performing handoff-related measurements for neighbor cells using multiple input multiple output (MIMO) antenna resources. In one example, a mobile device is in communication with a serving cell. Handoff-related measurements of first wireless signals from a first neighbor cell are performed. The first wireless signals are received at first MIMO antenna resources of a device. Handoff-related measurements of second wireless signals from a second neighbor cell are performed, as well. The second wireless signals are received at second MIMO antenna resources concurrently with the first wireless signals received at the first MIMO antenna resources. The first handoff-related measurements and the second handoff-related measurements may be performed during a scan interval. A type of handoff-related measurement to perform may be determined based on a determined length of the scan interval.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: December 26, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Steven Cheng, Remi Gurski, Kuo-Chun Lee, Tom Chin, Guangming Shi
  • Patent number: 11780464
    Abstract: Techniques are described herein for generating trajectories for autonomous vehicles using velocity-based steering limits. A planning component of an autonomous vehicle can receive steering limits determined based on safety requirements and/or kinematic models of the vehicle. Discontinuous and discrete steering limit values may be converted into a continuous steering limit function for use during on-vehicle trajectory generation and/or optimization operations. When the vehicle is traversing a driving environment, the planning component may use steering limit functions to determine a set of situation-specific steering limits associated with the particular vehicle state and/or driving conditions. The planning component may execute loss functions, including steering angle and/or steering rate costs, to determine a vehicle trajectory based on the steering limits applicable to the current vehicle state.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: October 10, 2023
    Assignee: Zoox, Inc.
    Inventors: Joseph Funke, Steven Cheng Qian, Kazuhide Okamoto, Jacob Patrick Thalman, Sriram Narayanan, Liam Gallagher
  • Patent number: 11687132
    Abstract: A crossflow air deflector part for directing airflow includes a front central spine, a first arcuate wall extending from the spine to a first back lateral edge of the airflow deflector, and a second arcuate wall extending from the spine to a second back lateral edge of the airflow deflector opposing the first back lateral edge. Such an airflow deflector can be implemented into a storage server, positioned between a laterally adjacent pair of data storage device (DSD) chambers and a pair of vertically stacked fans, such that the crossflow air deflector functions to direct airflow from one of the lateral DSD chambers into the lower fan and to direct airflow from the other lateral DSD chamber into the upper fan. Independent airflow control for each DSD chamber and each corresponding DSD is thereby provided.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: June 27, 2023
    Assignee: Western Digital Technologies, Inc.
    Inventors: Shailesh R Nayak, Joe Paul Moolanmoozha, Steven Cheng, Erik Silaprasay, Nicholas Maris
  • Publication number: 20230192127
    Abstract: Techniques are described herein for generating trajectories for autonomous vehicles using velocity-based steering limits. A planning component of an autonomous vehicle can receive steering limits determined based on safety requirements and/or kinematic models of the vehicle. Discontinuous and discrete steering limit values may be converted into a continuous steering limit function for use during on-vehicle trajectory generation and/or optimization operations. When the vehicle is traversing a driving environment, the planning component may use steering limit functions to determine a set of situation-specific steering limits associated with the particular vehicle state and/or driving conditions. The planning component may execute loss functions, including steering angle and/or steering rate costs, to determine a vehicle trajectory based on the steering limits applicable to the current vehicle state.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Joseph Funke, Steven Cheng Qian, Kazuhide Okamoto, Jacob Patrick Thalman, Sriram Narayanan, Liam Gallagher
  • Publication number: 20230182772
    Abstract: A passenger may be rather vulnerable to safety risks during pickup and/or drop-off of a passenger by a vehicle. To mitigate or eliminate such risk, the vehicle may determine an endpoint for a vehicle route to pickup or drop-off a passenger at a location. The vehicle may determine an estimated path between the endpoint and the location and may determine a safety confidence score by a machine-learned model for the estimated path and/or may predict a trajectory of a detected object to ascertain whether the estimated path is safe. The vehicle may execute any of a number of different mitigation actions to reduce or eliminate a safety risk if one is detected.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Inventors: Joseph Funke, Steven Cheng Qian, Genie Kim, Zheyuan Xie
  • Publication number: 20230060500
    Abstract: Techniques for requesting remote assistance from a vehicle are discussed. The techniques include receiving, from a remote computing device, coordinates of a footprint in which the vehicle is capable of stopping. The techniques further include receiving, from the remote computing device, a target orientation associated with the footprint. The techniques may determine a path to the footprint based to achieve target orientation associated with the footprint.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: Joseph Funke, Ravi Gogna, Caili Li, Steven Cheng Qian, Jacob Patrick Thalman, Ruikun Yu
  • Publication number: 20230060435
    Abstract: Techniques for providing remote assistance to a vehicle are discussed. The techniques include receiving, from a vehicle, an indication of an event and displaying, on a display and to a user, a portion of an environment including the vehicle. The techniques further determine a valid region in the portion of the environment associated with a location at which the vehicle is capable of navigating. The techniques also display, on the display a footprint of the vehicle, where the footprint is associated with a position and orientation. The techniques further include transmitting the position and orientation of the footprint to the vehicle, which causes the vehicle to traverse in the environment to the position and orientation.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: Joseph Funke, Ravi Gogna, Caili Li, Steven Cheng Qian, Jacob Patrick Thalman, Ruikun Yu
  • Patent number: 11550324
    Abstract: Techniques and methods for identifying parking zones. For instance, a vehicle may identify a parking zone located near a destination location for the vehicle. The vehicle may then generate one or more lines representing the parking zone. Additionally, the vehicle may generate polygons representing objects located proximate to the parking zone. The vehicle may then determine whether the one or more lines intersect with one or more of the polygons. If the vehicle determines that the one or more lines intersect with one or more of the polygons, then the vehicle may identify one or more first portions of the parking zone that are occupied by one or more objects and as such, unavailable. Using the one or more first portions, the vehicle may identify one or more second portions of the parking zone that are not occupied by objects and as such, available.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: January 10, 2023
    Assignee: Zoox, Inc.
    Inventors: Zheyuan Xie, Joseph Funke, Steven Cheng Qian
  • Publication number: 20220350379
    Abstract: A crossflow air deflector part for directing airflow includes a front central spine, a first arcuate wall extending from the spine to a first back lateral edge of the airflow deflector, and a second arcuate wall extending from the spine to a second back lateral edge of the airflow deflector opposing the first back lateral edge. Such an airflow deflector can be implemented into a storage server, positioned between a laterally adjacent pair of data storage device (DSD) chambers and a pair of vertically stacked fans, such that the crossflow air deflector functions to direct airflow from one of the lateral DSD chambers into the lower fan and to direct airflow from the other lateral DSD chamber into the upper fan. Independent airflow control for each DSD chamber and each corresponding DSD is thereby provided.
    Type: Application
    Filed: July 6, 2022
    Publication date: November 3, 2022
    Inventors: Shailesh R. Nayak, Joe Paul Moolanmoozha, Steven Cheng, Erik Silaprasay, Nicholas Maris
  • Publication number: 20220244763
    Abstract: A crossflow air deflector part for directing airflow includes a front central spine, a first arcuate wall extending from the spine to a first back lateral edge of the airflow deflector, and a second arcuate wall extending from the spine to a second back lateral edge of the airflow deflector opposing the first back lateral edge. Such an airflow deflector can be implemented into a storage server, positioned between a laterally adjacent pair of data storage device (DSD) chambers and a pair of vertically stacked fans, such that the crossflow air deflector functions to direct airflow from one of the lateral DSD chambers into the lower fan and to direct airflow from the other lateral DSD chamber into the upper fan. Independent airflow control for each DSD chamber and each corresponding DSD is thereby provided.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 4, 2022
    Inventors: Shailesh R. Nayak, Joe Paul Moolanmoozha, Steven Cheng, Erik Silaprasay, Nicholas Maris
  • Patent number: 11402884
    Abstract: A crossflow air deflector part for directing airflow includes a front central spine, a first arcuate wall extending from the spine to a first back lateral edge of the airflow deflector, and a second arcuate wall extending from the spine to a second back lateral edge of the airflow deflector opposing the first back lateral edge. Such an airflow deflector can be implemented into a storage server, positioned between a laterally adjacent pair of data storage device (DSD) chambers and a pair of vertically stacked fans, such that the crossflow air deflector functions to direct airflow from one of the lateral DSD chambers into the lower fan and to direct airflow from the other lateral DSD chamber into the upper fan. Independent airflow control for each DSD chamber and each corresponding DSD is thereby provided.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: August 2, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Shailesh R Nayak, Joe Paul Moolanmoozha, Steven Cheng, Erik Silaprasay, Nicholas Maris
  • Patent number: 11142188
    Abstract: Techniques for controlling a vehicle on and off a route structure in an environment are discussed herein. A vehicle computing system controls the vehicle along a route based on a route-based reference system. The vehicle computing system may determine to operate off the route, such as to operate in reverse, park, etc. The vehicle computing system may modify vehicle operations to an inertial-based reference system to navigate to a location off the route. The vehicle computing system may determine a vehicle trajectory to the location off the route based on a reference trajectory between a location on the route and the location off the route and a corridor associated therewith. The vehicle computing system may transition between the route-based reference system and the inertial-based reference system, based on a determination to operate on or off the route.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: October 12, 2021
    Assignee: Zoox, Inc.
    Inventors: Joseph Funke, Steven Cheng Qian, Marin Kobilarov
  • Publication number: 20210289407
    Abstract: Methods, systems, and devices are described for concurrently performing handoff-related measurements for neighbor cells using multiple input multiple output (MIMO) antenna resources. In one example, a mobile device is in communication with a serving cell. Handoff-related measurements of first wireless signals from a first neighbor cell are performed. The first wireless signals are received at first MIMO antenna resources of a device. Handoff-related measurements of second wireless signals from a second neighbor cell are performed, as well. The second wireless signals are received at second MIMO antenna resources concurrently with the first wireless signals received at the first MIMO antenna resources. The first handoff-related measurements and the second handoff-related measurements may be performed during a scan interval. A type of handoff-related measurement to perform may be determined based on a determined length of the scan interval.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 16, 2021
    Inventors: Steven CHENG, Remi GURSKI, Kuo-Chun LEE, Tom CHIN, Guangming SHI
  • Publication number: 20210197819
    Abstract: Techniques for determining a location for a vehicle to join a route structure are discussed herein. A vehicle computing system may operate the vehicle off the route structure according to an inertial-based reference frame. The vehicle computing system may determine a lateral distance of the vehicle to a route of the route structure and an angular difference between a heading of the vehicle and a direction of travel associated with the route. The vehicle computing system may determine a location to rejoin the route based on the lateral distance and the angular difference. In some examples, the vehicle computing system may determine the location based on a sigmoid function. The vehicle computing system may determine a vehicle trajectory to the location and may control the vehicle to the route based on the vehicle trajectory and the inertial-based reference frame.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Inventors: Kazuhide Okamoto, Joseph Funke, Steven Cheng Qian
  • Publication number: 20210197798
    Abstract: Techniques for controlling a vehicle on and off a route structure in an environment are discussed herein. A vehicle computing system controls the vehicle along a route based on a route-based reference system. The vehicle computing system may determine to operate off the route, such as to operate in reverse, park, etc. The vehicle computing system may modify vehicle operations to an inertial-based reference system to navigate to a location off the route. The vehicle computing system may determine a vehicle trajectory to the location off the route based on a reference trajectory between a location on the route and the location off the route and a corridor associated therewith. The vehicle computing system may transition between the route-based reference system and the inertial-based reference system, based on a determination to operate on or off the route.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Inventors: Joseph Funke, Steven Cheng Qian, Marin Kobilarov
  • Publication number: 20210096565
    Abstract: Techniques and methods for identifying parking zones. For instance, a vehicle may identify a parking zone located near a destination location for the vehicle. The vehicle may then generate one or more lines representing the parking zone. Additionally, the vehicle may generate polygons representing objects located proximate to the parking zone. The vehicle may then determine whether the one or more lines intersect with one or more of the polygons. If the vehicle determines that the one or more lines intersect with one or more of the polygons, then the vehicle may identify one or more first portions of the parking zone that are occupied by one or more objects and as such, unavailable. Using the one or more first portions, the vehicle may identify one or more second portions of the parking zone that are not occupied by objects and as such, available.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Zheyuan Xie, Joseph Funke, Steven Cheng Qian
  • Publication number: 20200092773
    Abstract: Methods, systems, and devices are described for concurrently performing handoff-related measurements for neighbor cells using multiple input multiple output (MIMO) antenna resources. In one example, a mobile device is in communication with a serving cell. Handoff-related measurements of first wireless signals from a first neighbor cell are performed. The first wireless signals are received at first MIMO antenna resources of a device. Handoff-related measurements of second wireless signals from a second neighbor cell are performed, as well. The second wireless signals are received at second MIMO antenna resources concurrently with the first wireless signals received at the first MIMO antenna resources. The first handoff-related measurements and the second handoff-related measurements may be performed during a scan interval. A type of handoff-related measurement to perform may be determined based on a determined length of the scan interval.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Steven Cheng, Remi Gurski, Kuo-Chun Lee, Tom Chin, Guangming Shi
  • Patent number: 9459955
    Abstract: A data storage device includes a memory and a controller. The controller is configured to scramble data using a scramble key to produce scrambled data and to encode the scramble key to produce an encoded scramble key. The controller is further configured to store the encoded scramble key and the scrambled data to the memory.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 4, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Daniel Edward Tuers, Steven Cheng