Patents by Inventor Steven Chu

Steven Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10987674
    Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 27, 2021
    Assignee: Visby Medical, Inc.
    Inventors: Boris Andreyev, Brian Ciopyk, Victor Briones, Jonathan Hong, David Swenson, Gregory Loney, Adam De La Zerda, Steven Chu
  • Publication number: 20210039097
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: October 14, 2020
    Publication date: February 11, 2021
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Patent number: 10905401
    Abstract: Ultrasound imaging systems and methods with frequency (spectral) compounding for speckle reduction are disclosed. In one aspect, an ultrasound imaging system includes a transducer probe with interleaved transmit and receive arrays. The system may utilize ultrasound pulses having an optimized time-bandwidth product. In one aspect, a transducer probe with separate transmit and receive elements can enable transmission and reception of multiple ultrasound pulses, each centered at a different frequency, during the time of one A-scan. Thus, such a system can capture multiple independent speckle images without reducing overall B-mode framerate. In another aspect, the system may transmit a broadband pulse and may obtain separate speckle images by filtering the received echo using multiple spectral filters. The system may compound multiple images captured at different frequencies to provide speckle reduction.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: February 2, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yilei Li, Steven Chu
  • Publication number: 20200406256
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Patent number: 10842358
    Abstract: Example embodiments relate to endoscopic systems. The system includes an outer assembly and main assembly. The outer assembly may include proximal and distal ends and outer anchor assembly. The outer anchor assembly may include a first expandable member and first outer pressure opening. The first expandable member may expand radially outwards. The main assembly may include proximal and distal ends and a navigation assembly. The navigation assembly may include an instrument, second expandable member, bendable section, extendible section, and first pressure opening. The extendible section may include proximal and distal ends. The proximal end of the extendible section may be secured in position relative to the distal end of the outer assembly. The extendible section may be configurable to extend and contract. The first main pressure opening may be configurable to apply a negative pressure.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: November 24, 2020
    Assignee: Bio-Medical Engineering (HK) Limited
    Inventors: Chung-Kwong Yeung, Steven Chu, Wing Fai Lam
  • Publication number: 20200237339
    Abstract: Nonlinear ultrasound imaging systems and methods are disclose. In one aspect, a nonlinear ultrasound imaging system includes a first transducer configured to transmit a first ultrasound signal along a scan line, a second transducer configured to sweep a second ultrasound signal along the scan line such that the first and second ultrasound signals intersect at a plurality of voxels, and a third transducer configured to receive echoes associated with interactions of the first and second ultrasound signals at the plurality of voxels. The nonlinear ultrasound imaging system further includes a processor configured to generate an ultrasound image based on the echoes.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 30, 2020
    Inventors: Yilei Li, Steven Chu
  • Patent number: 10646288
    Abstract: Systems and methods for automated steering control of a robotic endoscope, e.g., a colonoscope, are provided. The control system may comprise: a) a first image sensor configured to capture a first input data stream comprising a series of two or more images of a lumen; and b) one or more processors that are individually or collectively configured to generate a steering control output signal based on an analysis of data derived from the first input data stream using a machine learning architecture, wherein the steering control output signal adapts to changes in the data of the first input data stream in real time.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 12, 2020
    Assignee: BIO-MEDICAL ENGINEERING (HK) LIMITED
    Inventors: Chung-Kwong Yeung, Steven Chu, Wenling Chan, Tin Chak Johnson Pang, Hon Chung Chung
  • Patent number: 10555721
    Abstract: Nonlinear ultrasound imaging systems and methods are disclose. In one aspect, a nonlinear ultrasound imaging system includes a first transducer configured to transmit a first ultrasound signal along a scan line, a second transducer configured to sweep a second ultrasound signal along the scan line such that the first and second ultrasound signals intersect at a plurality of voxels, and a third transducer configured to receive echoes associated with interactions of the first and second ultrasound signals at the plurality of voxels. The nonlinear ultrasound imaging system further includes a processor configured to generate an ultrasound image based on the echoes.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: February 11, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yilei Li, Steven Chu
  • Patent number: 10525469
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 7, 2020
    Assignee: Visby Medical, Inc.
    Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
  • Patent number: 10456783
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 29, 2019
    Assignee: Click Diagnostics, Inc.
    Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
  • Publication number: 20190232283
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Applicant: Click Diagnostics, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Publication number: 20190193077
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Applicant: Click Diagnostics, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Patent number: 10279346
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 7, 2019
    Assignee: Click Diagnostics, Inc.
    Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
  • Patent number: 10256448
    Abstract: A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: April 9, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Guangyuan Zheng, Steven Chu, Kai Yan
  • Publication number: 20190030532
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Applicant: Click Diagnostics, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Publication number: 20190022643
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 24, 2019
    Applicant: Click Diagnostics, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Publication number: 20190008485
    Abstract: Ultrasound imaging systems and methods with frequency (spectral) compounding for speckle reduction are disclosed. In one aspect, an ultrasound imaging system includes a transducer probe with interleaved transmit and receive arrays. The system may utilize ultrasound pulses having an optimized time-bandwidth product. In one aspect, a transducer probe with separate transmit and receive elements can enable transmission and reception of multiple ultrasound pulses, each centered at a different frequency, during the time of one A-scan. Thus, such a system can capture multiple independent speckle images without reducing overall B-mode framerate. In another aspect, the system may transmit a broadband pulse and may obtain separate speckle images by filtering the received echo using multiple spectral filters. The system may compound multiple images captured at different frequencies to provide speckle reduction.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 10, 2019
    Inventors: Yilei Li, Steven Chu
  • Publication number: 20180368666
    Abstract: Example embodiments relate to endoscopic systems. The system includes an outer assembly and main assembly. The outer assembly may include proximal and distal ends and outer anchor assembly. The outer anchor assembly may include a first expandable member and first outer pressure opening. The first expandable member may expand radially outwards. The main assembly may include proximal and distal ends and a navigation assembly. The navigation assembly may include an instrument, second expandable member, bendable section, extendible section, and first pressure opening. The extendible section may include proximal and distal ends. The proximal end of the extendible section may be secured in position relative to the distal end of the outer assembly. The extendible section may be configurable to extend and contract. The first main pressure opening may be configurable to apply a negative pressure.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 27, 2018
    Inventors: Chung-Kwong Yeung, Steven Chu, Wing Fai Lam
  • Publication number: 20180338744
    Abstract: Nonlinear ultrasound imaging systems and methods are disclose. In one aspect, a nonlinear ultrasound imaging system includes a first transducer configured to transmit a first ultrasound signal along a scan line, a second transducer configured to sweep a second ultrasound signal along the scan line such that the first and second ultrasound signals intersect at a plurality of voxels, and a third transducer configured to receive echoes associated with interactions of the first and second ultrasound signals at the plurality of voxels. The nonlinear ultrasound imaging system further includes a processor configured to generate an ultrasound image based on the echoes.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 29, 2018
    Inventors: Yilei Li, Steven Chu
  • Patent number: 10136799
    Abstract: Example embodiments relate to endoscopic systems. The system includes an elongated main body having a first end. The system may further comprise an anchor assembly attached to the main body near the first end of the main body. The anchor assembly may comprise a first expandable member. The first expandable member may be configurable to expand radially away from the main body. The anchor assembly may further comprise a second expandable member provided between the first expandable member and the first end of the main body. The second expandable member may be configurable to expand radially away from the main body. The anchor assembly may be operable to secure the main body with respect to an interior wall forming the cavity of the patient.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 27, 2018
    Assignee: Bio-Medical Engineering (HK) Limited
    Inventors: Chung-Kwong Yeung, Steven Chu, Wing Fai Lam