Patents by Inventor Steven D. Goedeke

Steven D. Goedeke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6463329
    Abstract: An improved telemetry head that employs two coils is disclosed. A first, larger diameter outer coil is generally employed to initiate telemetric communication between the programmer or monitor and the implanted device. In the event that successful communication is not accomplished using the outer coil, the programmer or monitor attempts communication using the inner coil. Any resultant reduced signal strength that may be associated with use of the smaller diameter inner coil is acceptable based on the assumption that the antenna of the implanted device is located in the null associated with the outer antenna coil and thus is located in close proximity to the inner coil. To prevent loss of signal strength, addition turns may be employed to implement the inner coil. In one embodiment, at least one of the first and second coils is of a dual-coil configuration having two coils in series opposition to improve the signal-to-noise ratio.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: October 8, 2002
    Assignee: Medtronic, Inc.
    Inventor: Steven D. Goedeke
  • Publication number: 20020072783
    Abstract: A method and a system for retrieving information from an IMD so that a physician may better use the time allotted to a patient. In an example embodiment, a method for communicating between an implanted device and a medical data processing system occurs via a communications module coupled to an antenna member and to the medical data processing system. The communication module and the antenna are arranged to transmit and receive radio frequency signals within a given range or space such as in a room. The method includes broadcasting interrogation requests in the range via the communications module and antenna arrangement and establishing a communications link between the implanted device present in the range and the communications module. A set of patient diagnostic data is then transmitted from the implanted device to the communications module in response to an encoded radio frequency signal from the communications module.
    Type: Application
    Filed: December 8, 2000
    Publication date: June 13, 2002
    Applicant: Medtronic, Inc.
    Inventors: Steven D. Goedeke, David L. Thompson
  • Publication number: 20020026224
    Abstract: Implantable medical devices (IMDs) having sense amplifiers for sensing physiologic signals and parameters, RF telemetry capabilities for uplink transmitting patient data and downlink receiving programming and interrogation commands to and from an external programmer or other medical device are disclosed. At least one IC chip and discrete components have a volume and dimensions that are optimally minimized to reduce its volumetric form factor. Miniaturization techniques include forming notch filters of MEMS structures or forming discrete circuit notch filters by one or more of: (1) IC fabricating inductors into one or more IC chips mounted to the RF module substrate; (2) mounting each IC chip into a well of the RF module substrate and using short bonding wires to electrically connect bond pads of the RF module substrate and the IC chip; and (3) surface mounting discrete capacitors over IC chips to reduce space taken up on the RF module substrate.
    Type: Application
    Filed: December 5, 2000
    Publication date: February 28, 2002
    Applicant: Medtronic, Inc.
    Inventors: David L. Thompson, Gregory J. Haubrich, Steven D. Goedeke
  • Publication number: 20010047194
    Abstract: The operational and functional aspects of one or more IMDs is controlled by physiological data acquired from an external device. Various externally deployed devices collect vital signals for transmission to the IMD. Upon receipt of the signals the IMD cooperatively modifies therapy and diagnostic procedures to be substantially compliant with the received signals. Further, the IMD may store some of the signals for future follow-up or patient data management as needed.
    Type: Application
    Filed: April 4, 2001
    Publication date: November 29, 2001
    Inventors: David L. Thompson, Daniel R. Greeninger, Steven D. Goedeke
  • Publication number: 20010032085
    Abstract: The voice controlled system of the present invention permits hands-free interactive control of a medical data processing instrument that interfaces with an implanted medical device. In an example embodiment, the system includes a microphone and a speech recognition circuit coupled to the microphone and adapted to recognize an audio signal from the microphone. The audio signal corresponds to one of a subset of commands from a set of commands and each command corresponds to a task to be performed on the implanted medical device. The speech recognition circuit is further adapted to convert the audio signal into a selection code and match the selection code to one of the subset of commands. The system further includes a display device and a processor arrangement coupled to the speech recognition circuit and to the display device. The processor arrangement is configured to receive data indicative of an implanted medical device state and select the subset of commands as a function of the device state.
    Type: Application
    Filed: December 6, 2000
    Publication date: October 18, 2001
    Inventors: Steven D. Goedeke, David L. Thompson
  • Patent number: 6292698
    Abstract: A system for communicating with a medical device implanted in an ambulatory patient and for locating the patient in order to selectively monitor device function, alter device operating parameters and modes and provide emergency assistance to and communications with a patient. The implanted device includes a telemetry transceiver for communicating data and operating instructions between the implanted device and an external patient communications control device that is either worn by or located in proximity to the patient within the implanted device transceiving range. The control device preferably includes a communication link with a remote medical support network, a global positioning satellite receiver for receiving positioning data identifying the global position of the control device, and a patient activated link for permitting patient initiated personal communication with the medical support network.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: September 18, 2001
    Assignee: Medtronic, Inc.
    Inventors: Edwin G. Duffin, David L. Thompson, Steven D. Goedeke, Gregory J. Haubrich
  • Publication number: 20010012955
    Abstract: Uplink and downlink telemetry between an implantable medical device (IMD) telemetry transceiver and an external medical device (EMD) telemetry transceiver used by a patient or health care provider is facilitated by the communications system of the present invention. The IMD provides a therapy and/or measures physiologic conditions of the patient for use in formulating a therapy and/or for storage in IMD memory for later uplink telemetry transmission. The patient causes the EMD to emit encoded dual tone multiple frequency (DTMF) tones that are detected by an audio receiver of the IMD to enable uplink and downlink telemetry transmissions in a telemetry or communication session. Then, the patient formulates a message via a message entry mechanism of the EMD that communicates an instruction or query to the IMD. The downlink message is optionally displayed by an EMD display as it is composed by the user and is then downlink telemetered to the IMD.
    Type: Application
    Filed: March 19, 2001
    Publication date: August 9, 2001
    Applicant: Medtronic, Inc.
    Inventors: Steven D. Goedeke, Charles H. Dudding
  • Patent number: 6263246
    Abstract: An implantable medical device and a method of operation thereof. The implantable device includes apparatus for delivering a therapy to a patient or monitoring a physiologic parameter of a patient and control circuitry for modifying operation of the device. The device further includes an audio receiver responsive to sequences of DTMF tones and coupled to the control circuitry, which modifies the operation of the device responsive to received DTMF tone sequences. The device preferably includes a telemetry system and the control circuitry may modify operation of the telemetry system responsive to received DTMF tone sequences. In addition or alternatively, the control circuitry may modify operation of the apparatus for delivering a therapy to a patient or monitoring a physiologic parameter responsive to received DTMF tone sequences. The device may further include an audio tone generator for generating a tone or series of tones indicative of operation or status of the device.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: July 17, 2001
    Assignee: Medtronic, Inc.
    Inventors: Steven D. Goedeke, Charles H. Dudding
  • Patent number: 6169925
    Abstract: A device for use in communication with an implantable medical device. The device is provided with a spatial diversity antenna array mounted to a housing and an RF transceiver operating at defined frequency, coupled to the antenna alray. The antenna array comprises two antennas spaced a fraction of the wavelength of the defined frequency from one another, each antenna including two antenna elements mounted to the housing and located oithogonal to one another. Selection of which of the antennas is employed is accomplished by an device controller, responsive to the quality of the signals received by the antennas.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: January 2, 2001
    Assignee: Medtronic, Inc.
    Inventors: Eduardo H. Villaseca, Garry L. Dublin, Steven D. Goedeke, Gregory J. Haubrich
  • Patent number: 6167312
    Abstract: A device for use in communication with an implantable medical device. The device is provided with a spatial diversity antenna array mounted to the device housing and an operating at defined frequency, located within the device housing, coupled to the antenna array. The antenna array includes at least one antenna permanently mounted to the device housing and an antenna removably mounted to the device housing and locatable at a distance from the housing, coupled to the RF transceiver. A device controller selects which of the antennas in the antenna array is coupled to the transceiver responsive to the quality of signals received by the antennas.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: December 26, 2000
    Assignee: Medtronic, Inc.
    Inventor: Steven D. Goedeke
  • Patent number: 5904708
    Abstract: A patient monitoring and/or therapy delivery system and method employing an implantable medical device for sensing absolute physiologic signal values within the body of a patient, e.g., absolute blood pressure, temperature, etc., and an external monitoring device for monitoring and conveying ambient signal values to the implantable medical device, wherein the absolute physiologic signal values and the ambient signal values are combined to derive relative physiologic signal values for storage and/or control of a therapy provided by the implantable medical device. In the context of an implantable physiologic monitor, the relative and optionally, the absolute and/or ambient physiologic signal values are stored in memory for telemetry out to an external programmer in an uplink RF telemetry transmission initiated by medical personnel operating the external programmer. In the context of an implantable therapy delivery device, the relative physiologic signal values are also employed in therapy delivery algorithms.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: May 18, 1999
    Assignee: Medtronic, Inc.
    Inventor: Steven D. Goedeke
  • Patent number: 5843139
    Abstract: An adaptive, performance-optimizing communication system for communicating with an implanted medical device in which signals are transmitted and received in accordance with predetermined, interrelated operational parameters, such as transmission rate, transmitter power, and the like. Various aspects of system performance, including bit error rate in received signals, the strength of received signals, the signal-to-noise ratio of received signals, the presence of local RF noise and non-telemetry related RF signals, and the like, are dynamically monitored by the communication system, to determine whether predetermined system performance goals are being met. If it is determined that one or more system performance goals are not being met, one or more operational parameters may be automatically adjusted so that desired performance can be achieved.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: December 1, 1998
    Assignee: Medtronic, Inc.
    Inventors: Steven D. Goedeke, Gregory J. Haubrich, John G. Keimel, David L. Thompson
  • Patent number: 5752976
    Abstract: A system and method for communicating with a medical device implanted in an ambulatory patient and for locating the patient in order to selectively monitor device function, alter device operating parameters and modes and provide emergency assistance to and communications with a patient. The implanted device includes a telemetry transceiver for communicating data and operating instructions between the implanted device and an external patient communications control device that is either worn by or located in proximity to the patient within the implanted device transceiving range. The control device preferably includes a communication link with a remote medical support network, a global positioning satellite receiver for receiving positioning data identifying the global position of the control device, and a patient activated link for permitting patient initiated personal communication with the medical support network.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: May 19, 1998
    Assignee: Medtronic, Inc.
    Inventors: Edwin G. Duffin, David L. Thompson, Steven D. Goedeke, Gregory J. Haubrich
  • Patent number: 5683432
    Abstract: An adaptive, performance-optimizing communication system for communicating with an implanted medical device in which signals are transmitted and received in accordance with predetermined, interrelated operational parameters, such as transmission rate, transmitter power, and the like. Various aspects of system performance, including bit error rate in received signals, the strength of received signals, the signal-to-noise ratio of received signals, the presence of local RF noise and non-telemetry related RF signals, and the like, are dynamically monitored by the communication system, to determine whether predetermined system performance goals are being met. If it is determined that one or more system performance goals are not being met, one or more operational parameters may be automatically adjusted so that desired performance can be achieved.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: November 4, 1997
    Assignee: Medtronic, Inc.
    Inventors: Steven D. Goedeke, Gregory J. Haubrich, John G. Keimel, David L. Thompson