Patents by Inventor Steven D. Potter

Steven D. Potter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093766
    Abstract: A robot leg assembly including a hip joint and an upper leg member. A proximal end portion of the upper leg member rotatably coupled to the hip joint. The robot leg assembly including a knee joint rotatably coupled to a distal end portion of the upper leg member, a lower leg member rotatably coupled to the knee joint, a linear actuator disposed on the upper leg member and defining a motion axis, and a motor coupled to the linear actuator and a linkage coupled to the translation stage and to the lower leg member. The linear actuator includes a translation stage moveable along the motion axis to translate rotational motion of the motor to linear motion of the translation stage along the motion axis, which moves the linkage to rotate the lower leg member relative to the upper leg member at the knee joint.
    Type: Application
    Filed: July 28, 2023
    Publication date: March 21, 2024
    Inventors: Steven D. Potter, Zachary John Jackowski, Adam Young
  • Publication number: 20230287982
    Abstract: The present disclosure provides: at least one component of a rotary valve subassembly; a rotary valve assembly including the rotary valve subassembly; a hydraulic circuit including the rotary valve assembly; an assembly including a robot that incorporates the hydraulic circuit; and a method of operating the rotary valve assembly. The at least one component of the rotary valve subassembly includes a spool. The at least one component of the rotary valve subassembly includes a sleeve.
    Type: Application
    Filed: March 14, 2023
    Publication date: September 14, 2023
    Inventors: Steven D. Potter, Christopher Everett Thorne, John Aaron Saunders
  • Patent number: 11754155
    Abstract: A robot leg assembly including a hip joint and an upper leg member. A proximal end portion of the upper leg member rotatably coupled to the hip joint. The robot leg assembly including a knee joint rotatably coupled to a distal end portion of the upper leg member, a lower leg member rotatably coupled to the knee joint, a linear actuator disposed on the upper leg member and defining a motion axis, and a motor coupled to the linear actuator and a linkage coupled to the translation stage and to the lower leg member. The linear actuator includes a translation stage moveable along the motion axis to translate rotational motion of the motor to linear motion of the translation stage along the motion axis, which moves the linkage to rotate the lower leg member relative to the upper leg member at the knee joint.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: September 12, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Zachary John Jackowski, Adam Young
  • Patent number: 11624447
    Abstract: The present disclosure provides: at least one component of a rotary valve subassembly; a rotary valve assembly including the rotary valve subassembly; a hydraulic circuit including the rotary valve assembly; an assembly including a robot that incorporates the hydraulic circuit; and a method of operating the rotary valve assembly. The at least one component of the rotary valve subassembly includes a spool. The at least one component of the rotary valve subassembly includes a sleeve.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 11, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Christopher Everett Thorne, John Aaron Saunders
  • Patent number: 11590013
    Abstract: The present disclosure provides a brace system including an upper portion and a lower portion. The brace system may also include a first pulley rotatably coupling the upper portion to a first intermediate link positioned between the upper portion and the lower portion. The brace system may also include a second pulley rotatably coupling the first intermediate link to a second intermediate link positioned between the upper portion and the lower portion. The brace system may also include a third pulley rotatably coupling the second intermediate link to the lower portion. Further, the brace system may include at least one tension-bearing element substantially encircling each of the first pulley, the second pulley, and the third pulley.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: February 28, 2023
    Assignee: BOSTON DYNAMICS, INC.
    Inventors: Christopher Everett Thorne, Steven D. Potter, Michael Patrick Murphy
  • Publication number: 20220003297
    Abstract: A robot leg assembly including a hip joint and an upper leg member. A proximal end portion of the upper leg member rotatably coupled to the hip joint. The robot leg assembly including a knee joint rotatably coupled to a distal end portion of the upper leg member, a lower leg member rotatably coupled to the knee joint, a linear actuator disposed on the upper leg member and defining a motion axis, and a motor coupled to the linear actuator and a linkage coupled to the translation stage and to the lower leg member. The linear actuator includes a translation stage moveable along the motion axis to translate rotational motion of the motor to linear motion of the translation stage along the motion axis, which moves the linkage to rotate the lower leg member relative to the upper leg member at the knee joint.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Applicant: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Zachary John Jackowski, Adam Young
  • Patent number: 11131368
    Abstract: An example robot includes: a leg having an upper leg member and a lower leg member coupled to the upper leg member at a knee joint; a screw actuator disposed within the upper leg member, where the screw actuator has a screw shaft and a nut mounted coaxial to the screw shaft such that the screw shaft is rotatable within the nut; a motor mounted at an upper portion of the upper leg member and coupled to the screw shaft; a carrier coupled and mounted coaxial to the nut such that the nut is disposed at a proximal end of the carrier; and a linkage coupled to the carrier, where the linkage is coupled to the lower leg member at the knee joint.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: September 28, 2021
    Assignee: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Zachary John Jackowski, Adam Young
  • Patent number: 10962033
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: March 30, 2021
    Assignee: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven D. Potter
  • Publication number: 20200362972
    Abstract: The present disclosure provides: at least one component of a rotary valve subassembly; a rotary valve assembly including the rotary valve subassembly; a hydraulic circuit including the rotary valve assembly; an assembly including a robot that incorporates the hydraulic circuit; and a method of operating the rotary valve assembly. The at least one component of the rotary valve subassembly includes a spool. The at least one component of the rotary valve subassembly includes a sleeve.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 19, 2020
    Applicant: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Christopher Everett Thorne, Aaron Saunders
  • Patent number: 10808736
    Abstract: An example valve includes a sleeve having a plurality of openings. A spool is rotatable within the sleeve and includes a respective plurality of openings corresponding to the plurality of openings of the sleeve. A rotary actuator coupled to the spool is configured for rotating the spool within the sleeve to one of at least eight rotary positions. The rotary actuator can rotate the spool to a given rotary position in a clockwise or a counter-clockwise direction to cause at least a partial alignment between a subset of the respective plurality of openings of the spool and a subset of the plurality of openings of the sleeve.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: October 20, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, John Aaron Saunders
  • Patent number: 10802508
    Abstract: A robot includes an inverted pendulum body having first and second end portions, a counter-balance body disposed on the inverted pendulum body and configured to move relative to the inverted pendulum body, at least one leg having first and second ends, and a drive wheel rotatably coupled to the second end of the at least one leg. The first end of the at least one leg is prismatically coupled to the second end portion of the inverted pendulum body.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 13, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Kevin Blankespoor, Steven D. Potter
  • Patent number: 10780578
    Abstract: A method of operating a robot includes driving a robot to approach a reach point, extending a manipulator arm forward of the reach point, and maintaining a drive wheel and a center of mass of the robot rearward of the reach point by moving a counter-balance body relative to an inverted pendulum body while extending the manipulator arm forward of the reach point. The robot includes the inverted pendulum body, the counter-balance body deposed on the inverted pendulum body, the manipulator arm connected to the inverted pendulum body, at least one leg having a first end prismatically coupled to the inverted pendulum body, and the drive wheel rotatably coupled to a second end of the at least one leg.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: September 22, 2020
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, John Aaron Saunders, Steven D. Potter, Vadim Chernyak, Shervin Talebinejad
  • Publication number: 20190258275
    Abstract: A robot includes an inverted pendulum body having first and second end portions, a counter-balance body disposed on the inverted pendulum body and configured to move relative to the inverted pendulum body, at least one leg having first and second ends, and a drive wheel rotatably coupled to the second end of the at least one leg. The first end of the at least one leg is prismatically coupled to the second end portion of the inverted pendulum body.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Kevin Blankespoor, Steven D. Potter
  • Publication number: 20190255701
    Abstract: A method of operating a robot includes driving a robot to approach a reach point, extending a manipulator arm forward of the reach point, and maintaining a drive wheel and a center of mass of the robot rearward of the reach point by moving a counter-balance body relative to an inverted pendulum body while extending the manipulator arm forward of the reach point. The robot includes the inverted pendulum body, the counter-balance body deposed on the inverted pendulum body, the manipulator arm connected to the inverted pendulum body, at least one leg having a first end prismatically coupled to the inverted pendulum body, and the drive wheel rotatably coupled to a second end of the at least one leg.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, John Aaron Saunders, Steven D. Potter, Vadim Chernyak, Shervin Talebinejad
  • Publication number: 20190226503
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven D. Potter
  • Publication number: 20190186604
    Abstract: An example robot includes: a leg having an upper leg member and a lower leg member coupled to the upper leg member at a knee joint; a screw actuator disposed within the upper leg member, where the screw actuator has a screw shaft and a nut mounted coaxial to the screw shaft such that the screw shaft is rotatable within the nut; a motor mounted at an upper portion of the upper leg member and coupled to the screw shaft; a carrier coupled and mounted coaxial to the nut such that the nut is disposed at a proximal end of the carrier; and a linkage coupled to the carrier, where the linkage is coupled to the lower leg member at the knee joint.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 20, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Zachary John Jackowski, Adam Young
  • Publication number: 20190154063
    Abstract: An example valve includes a sleeve having a plurality of openings. A spool is rotatable within the sleeve and includes a respective plurality of openings corresponding to the plurality of openings of the sleeve. A rotary actuator coupled to the spool is configured for rotating the spool within the sleeve to one of at least eight rotary positions. The rotary actuator can rotate the spool to a given rotary position in a clockwise or a counter-clockwise direction to cause at least a partial alignment between a subset of the respective plurality of openings of the spool and a subset of the plurality of openings of the sleeve.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Applicant: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, John Aaron Saunders
  • Patent number: 10273986
    Abstract: An actuation pressure to actuate one or more hydraulic actuators may be determined based on a load on the one or more hydraulic actuators of a robotic device. Based on the determined actuation pressure, a pressure rail from among a set of pressure rails at respective pressures may be selected. One or more valves may connect the selected pressure rail to a metering valve. The hydraulic drive system may operate in a discrete mode in which the metering valve opens such that hydraulic fluid flows from the selected pressure rail through the metering valve to the one or more hydraulic actuators at approximately the supply pressure. Responsive to a control state of the robotic device, the hydraulic drive system may operate in a continuous mode in which the metering valve throttles the hydraulic fluid such that the supply pressure is reduced to the determined actuation pressure.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 30, 2019
    Assignee: Boston Dynamics, Inc.
    Inventors: Michael Murphy, John Aaron Saunders, Steven D. Potter
  • Patent number: 10253855
    Abstract: An example robot includes: a leg having an upper leg member and a lower leg member coupled to the upper leg member at a knee joint; a screw actuator disposed within the upper leg member, where the screw actuator has a screw shaft and a nut mounted coaxial to the screw shaft such that the screw shaft is rotatable within the nut; a motor mounted at an upper portion of the upper leg member and coupled to the screw shaft; a carrier coupled and mounted coaxial to the nut such that the nut is disposed at a proximal end of the carrier; and a linkage coupled to the carrier, where the linkage is coupled to the lower leg member at the knee joint.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: April 9, 2019
    Assignee: Boston Dynamics, Inc.
    Inventors: Steven D. Potter, Zachary John Jackowski, Adam Young
  • Patent number: 10231859
    Abstract: The present disclosure provides a brace system including an upper portion and a lower portion. The brace system may also include a first pulley rotatably coupling the upper portion to a first intermediate link positioned between the upper portion and the lower portion. The brace system may also include a second pulley rotatably coupling the first intermediate link to a second intermediate link positioned between the upper portion and the lower portion. The brace system may also include a third pulley rotatably coupling the second intermediate link to the lower portion. Further, the brace system may include at least one tension-bearing element substantially encircling each of the first pulley, the second pulley, and the third pulley.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: March 19, 2019
    Assignee: Boston Dynamics, Inc.
    Inventors: Christopher Everett Thorne, Steven D. Potter, Michael Patrick Murphy