Patents by Inventor Steven Edward DeMartino

Steven Edward DeMartino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10239778
    Abstract: A method for severing a glass sheet includes preferentially heating a region of the glass sheet to form a softened region. A slit is formed in the softened region of the glass sheet to form a slit region. The slit extends at least partially into a thickness of the glass sheet. Heat is preferentially applied to the slit region of the glass sheet.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: March 26, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, David Alan Deneka, Aniello M. Palumbo
  • Publication number: 20190084875
    Abstract: Glass pharmaceutical packages comprising glass containers are disclosed. In embodiments, a coated glass pharmaceutical package includes a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A lubricous coating may be positioned on at least a portion of the exterior surface of the glass container. The portion of the coated glass pharmaceutical package with the lubricous coating has a coefficient of friction that is at least 20% less than an uncoated glass pharmaceutical package. A horizontal compression strength of the portion of the coated glass pharmaceutical package with the lubricous coating may be at least 10% greater than an uncoated glass pharmaceutical package.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 21, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Publication number: 20190076331
    Abstract: Coated glass pharmaceutical packages are disclosed. According to embodiments, a coated glass pharmaceutical package may include a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be bonded to the exterior surface of the glass container. The low-friction coating may include a polymer. The exterior surface of the glass container with the low-friction coating may have a coefficient of friction of less than or equal to 0.7. The coated glass pharmaceutical package may be thermally stable after depyrogenation in air at a temperature of at least about 260° C. for 30 minutes.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Publication number: 20190077702
    Abstract: A delamination resistant glass pharmaceutical container may include a glass body comprising a borosilicate glass having a Type 1 chemical durability according to USP <660>. At least an inner surface of the glass body may have a delamination factor less than or equal to 10. A thermally stable coating may be positioned around at least a portion of the outer surface of the glass body. The thermally stable coating may be an outermost coating on the outer surface of the glass body and the outer surface of the glass body with the thermally stable coating has a coefficient of friction less than or equal to 0.7. The thermally stable coating comprising at least one of a metal nitride coating, a metal oxide coating, a metal sulfide coating, SiO2, diamond-like carbon, graphene, and a carbide coating.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 10196298
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 5, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20190012033
    Abstract: Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 10, 2019
    Inventors: Fabio Lopes Brandao Salgado, Thomas Michael Cleary, Steven Edward DeMartino, Timothy Michael Gross, Atul Kumar, Cheng-Chung Li, Torsten Nath, Wendell Porter Weeks
  • Publication number: 20190012032
    Abstract: Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 10, 2019
    Inventors: Fabio Lopes Brandao Salgado, Thomas Michael Cleary, Steven Edward DeMartino, Timothy Michael Gross, Atul Kumar, Cheng-Chung Li, Torsten Nath, Wendell Porter Weeks
  • Publication number: 20180362398
    Abstract: A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Robert Anthony Schaut
  • Publication number: 20180318169
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be positioned on at least a portion of the first surface of the glass body the low-friction coating may include a polymer and a coupling agent disposed between the polymer and the first surface of the glass body. A coefficient of friction of the portion of the coated pharmaceutical package with the low-friction coating is at least 20% less than a coefficient of friction of a surface of an uncoated pharmaceutical package formed from the same glass composition.
    Type: Application
    Filed: June 30, 2018
    Publication date: November 8, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10117806
    Abstract: The glass containers described herein are resistant to delamination, have improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The body may also have a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body, such that the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 6, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Publication number: 20180303708
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may Include a glass body formed from borosilicate glass that meets Type 1 criteria according to USP <660> or alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating comprising a polymer may be positioned on a portion of the exterior surface. A coefficient of friction of an abraded area of the portion of the exterior surface with the low-friction coating may be less than 0.7 after exposure to a temperature of 260° C. for 30 minutes and abrasion under a load of at least 10 N and does not have observable damage. A retained strength of the coated glass article in horizontal compression does not decrease by more than 20% after the temperature exposure and the abrasion.
    Type: Application
    Filed: June 30, 2018
    Publication date: October 25, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10034816
    Abstract: A pharmaceutical package may include a glass body enclosing an inner volume and having an exterior surface. The glass body may be formed from a borosilicate glass that meets the Type 1 criteria according to USP <660>or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A coupling agent layer having a first thickness less than or equal to 100 nm may be disposed on the exterior surface of the glass body. A polymer layer having a second thickness of less than 50 nm may be positioned over the coupling agent layer. The exterior surface of the glass body with the coupling agent layer and the polymer layer may have a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: July 31, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10023495
    Abstract: The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. A compressively stressed layer may extend from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the lubricous coating may have a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 17, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Publication number: 20180147114
    Abstract: A glass pharmaceutical package having a glass composition of 68.00 mol % to 81.00 mol % SiO2, from 4.00 mol % to 11.00 mol % Al2O3, from 0.10 mol % to 16.00 mol % Li2O, from 0.10 mol % to 12.00 mol % Na2O, from 0.00 mol % to 5.00 mol % K2O, from 0.10 mol % to 8.00 mol % MgO, from 0.10 mol % to 5.00 mol % CaO, from 0.00 mol % to 0.20 mol % fining agent. The glass pharmaceutical package is delamination resistant, and has class 1 or class 2 chemical durability in acid, base, and water. The glass pharmaceutical package may be substantially free of B2O3, SrO, BaO, and ZrO2.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 31, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Nadja Teresia Lönnroth, Lina Ma, Robert Anthony Schaut, Charlene Marie Smith, Zhongzhi Tang, Jamie Todd Westbrook
  • Patent number: 9977470
    Abstract: Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: May 22, 2018
    Assignee: Corning Incorporated
    Inventors: Steven Edward DeMartino, Michelle Dawn Fabian, Jeffrey Todd Kohli, Jennifer Lynn Lyon, Charlene Marie Smith, Zhongzhi Tang
  • Publication number: 20180116907
    Abstract: Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Kyle Christopher Hoff
  • Publication number: 20180100698
    Abstract: A method for processing material includes sintering a portion of a sheet of material at a location on the sheet, moving the sintering location along the sheet of material at a first rate, and pulling the sintered material away from the sintering location at a second rate that is greater than the first rate.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Steven Edward DeMartino, Daniel Warren Hawtof, Archit Lal, Xinghua Li, Daniel L. Maurey, Kevin William Uhlig
  • Publication number: 20180079682
    Abstract: A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 22, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Robert Anthony Schaut
  • Patent number: 9918898
    Abstract: Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 20, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 9908676
    Abstract: According to one embodiment, an apparatus for holding may include a plurality of ware keepers for receiving glassware. Each ware keeper may include a retention body comprising a wire coil circumscribing a glassware receiving volume. A lower-most winding of the wire coil forms a ware stop in the retention body. The retention body may include a spacer coil extending from the retention body below the ware stop. A base frame may include a plurality of apertures extending through the base frame. Each of the plurality of ware keepers may be positioned in a corresponding aperture in the base frame such that the retention body of each ware keeper is above a top surface of the base frame and the spacer coil of each ware keeper is below a bottom surface of the base frame.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: March 6, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Brian Christopher Sheehan, Steven Edward DeMartino, Christopher Lee Timmons