Patents by Inventor Steven Go

Steven Go has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971399
    Abstract: A resonant sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid and to generate an electric field between the free-standing electrodes. A controller measures an impedance response of the sensor to the fluid between the electrodes to determine an aging effect of the sensor.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 30, 2024
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Publication number: 20240082307
    Abstract: The invention provides methods of increasing the efficacy of a T cell therapy in a patient in need thereof. The invention includes methods of identifying a patient who would respond well to a T cell therapy or conditioning a patient prior to a T cell therapy so that the patient responds well to a T cell therapy. The conditioning involves administering one or more preconditioning agents prior to a T cell therapy and identifying biomarker cytokines prior to administering a T cell therapy.
    Type: Application
    Filed: August 24, 2023
    Publication date: March 14, 2024
    Applicants: Kite Pharma, Inc., Ofc of Tech Transfer, NIH
    Inventors: Adrian BOT, Jeffrey S. WIEZOREK, William GO, Rajul JAIN, James N. KOCHENDERFER, Steven A. ROSENBERG
  • Patent number: 11761938
    Abstract: A sensor system includes an unmanned vehicle system is provided that includes a housing, and an environmental sensor system coupled to the housing, the environmental sensor system configured to detect one or more environmental conditions of an environment in operational contact with the unmanned vehicle system. The environmental sensor includes a sensing element that includes a sensing material to detect and quantify at least one analyte gas by measuring impedance of the sensing element at one or more frequencies of the different frequencies during exposure of the sensing material to the at least one analyte gas.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 19, 2023
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Douglas Forman, Steven Go
  • Publication number: 20220326212
    Abstract: A resonant sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid and to generate an electric field between the free-standing electrodes. A controller measures an impedance response of the sensor to the fluid between the electrodes to determine an aging effect of the sensor.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Patent number: 11391716
    Abstract: A resonant sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid and to generate an electric field between the free-standing electrodes. A controller measures an impedance response of the sensor to the fluid between the electrodes to determine an aging effect of the sensor.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: July 19, 2022
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Publication number: 20220050071
    Abstract: A vessel sensor for measuring real-time data of a multiphase fluid, the vessel sensor having a housing; an inner electrode, wherein the inner electrode is positioned within the housing; and a vessel cavity located between the housing and the inner electrode.
    Type: Application
    Filed: December 21, 2018
    Publication date: February 17, 2022
    Inventors: William PLATT, Matthew SCHULMERICH, Cheryl SURMAN, Steven GO
  • Publication number: 20210270798
    Abstract: A resonant sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid and to generate an electric field between the free-standing electrodes. A controller measures an impedance response of the sensor to the fluid between the electrodes to determine an aging effect of the sensor.
    Type: Application
    Filed: April 7, 2021
    Publication date: September 2, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Patent number: 10996210
    Abstract: A locomotive system is provided that includes a platform, plural wheel-axle sets operably coupled to the platform, a reservoir attached to the platform and configured to hold a fluid, and a resonant sensor probe assembly coupled to the reservoir. The sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid, to generate an electric field between the free-standing electrodes, and to measure an impedance response of the sensor to the fluid between the electrodes.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 4, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Publication number: 20200400635
    Abstract: A sensor system includes an unmanned vehicle system is provided that includes a housing, and an environmental sensor system coupled to the housing, the environmental sensor system configured to detect one or more environmental conditions of an environment in operational contact with the unmanned vehicle system. The environmental sensor includes a sensing element that includes a sensing material to detect and quantify at least one analyte gas by measuring impedance of the sensing element at one or more frequencies of the different frequencies during exposure of the sensing material to the at least one analyte gas.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 24, 2020
    Inventors: Radislav Alexandrovich Potyrailo, Douglas Forman, Steven Go
  • Patent number: 10812878
    Abstract: Systems and methods are provided for environment sensing. The system includes a sensor node having a sensor. The sensor includes a sensing material configured to be in contact with an ambient environment. The system includes a remote system having a communication circuit and a controller circuit. The communication circuit is configured to be wirelessly communicatively coupled to the sensor node. The controller circuit electrically coupled to the communication circuit. The controller circuit configured to receive an impedance response of the sensing material and analyze the impedance response of the sensing material at frequencies that provide a linear response of the sensing material to an analyte of interest and at least partially reject effects of interferences.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 20, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Daniel White Sexton, Steven Go
  • Publication number: 20190297400
    Abstract: Systems and methods are provided for environment sensing. The system includes a sensor node having a sensor. The sensor includes a sensing material configured to be in contact with an ambient environment. The system includes a remote system having a communication circuit and a controller circuit. The communication circuit is configured to be wirelessly communicatively coupled to the sensor node. The controller circuit electrically coupled to the communication circuit. The controller circuit configured to receive an impedance response of the sensing material and analyze the impedance response of the sensing material at frequencies that provide a linear response of the sensing material to an analyte of interest and at least partially reject effects of interferences.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Radislav Alexandrovich Potyrailo, Daniel White Sexton, Steven Go
  • Patent number: 10368146
    Abstract: Systems and methods are provided for environment sensing. The system includes a sensor node having a sensor. The sensor includes a sensing material configured to be in contact with an ambient environment. The system includes a remote system having a communication circuit and a controller circuit. The communication circuit is configured to be wirelessly communicatively coupled to the sensor node. The controller circuit electrically coupled to the communication circuit. The controller circuit configured to receive an impedance response of the sensing material and analyze the impedance response of the sensing material at frequencies that provide a linear response of the sensing material to an analyte of interest and at least partially reject effects of interferences.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: July 30, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Daniel White Sexton, Steven Go
  • Publication number: 20190204291
    Abstract: A locomotive system is provided that includes a platform, plural wheel-axle sets operably coupled to the platform, a reservoir attached to the platform and configured to hold a fluid, and a resonant sensor probe assembly coupled to the reservoir. The sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid, to generate an electric field between the free-standing electrodes, and to measure an impedance response of the sensor to the fluid between the electrodes.
    Type: Application
    Filed: September 28, 2018
    Publication date: July 4, 2019
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Publication number: 20180080890
    Abstract: Systems and methods are provided for environment sensing. The system includes a sensor node having a sensor. The sensor includes a sensing material configured to be in contact with an ambient environment. The system includes a remote system having a communication circuit and a controller circuit. The communication circuit is configured to be wirelessly communicatively coupled to the sensor node. The controller circuit electrically coupled to the communication circuit. The controller circuit configured to receive an impedance response of the sensing material and analyze the impedance response of the sensing material at frequencies that provide a linear response of the sensing material to an analyte of interest and at least partially reject effects of interferences.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventors: Radislav Alexandrovich POTYRAILO, Daniel White SEXTON, Steven GO
  • Patent number: 9658178
    Abstract: A sensor includes a resonant transducer, the resonant transducer being configured to determine the composition of an emulsion. The composition of the emulsion is determined by measuring the complex impedance spectrum values of the mixture of the emulsion and applying multivariate data analysis to the values.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 23, 2017
    Assignee: General Electric Company
    Inventors: Cheryl Margaret Surman, William Chester Platt, William Guy Morris, Steven Go, Jon Albert Dieringer, Radislav A. Potyrailo
  • Patent number: 9176083
    Abstract: A system includes a vessel system for a fluid, a sampling assembly and a resonant sensor system coupled to the sampling assembly. The resonant sensor system may include a subsystem that detects a set of signals from a resonant sensor system at a plurality of locations in the vessel. The resonant sensor system may also include a subsystem that converts the set of signals to values of a complex impedance spectrum for the plurality of locations and stores the values of the complex impedance spectrum and frequency values. A subsystem determines a fluid phase inversion point from the values of the complex impedance spectrum.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 3, 2015
    Assignee: General Electric Company
    Inventors: Cheryl Margaret Surman, William Chester Platt, William Guy Morris, Steven Go, Jon Albert Dieringer, Radislav A. Potyrailo
  • Patent number: 8854052
    Abstract: A microwave sensor assembly includes a signal processing device for generating at least one microwave signal that includes a pattern of frequencies and at least one probe coupled to the signal processing device. The probe includes an emitter configured to generate an electromagnetic field from the at least one microwave signal, wherein the emitter is detuned when an object is positioned within the electromagnetic field such that a loading signal is reflected from the emitter to the signal processing device.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Boris Leonid Sheikman, Steven Go
  • Patent number: 8829923
    Abstract: A proximity sensor assembly with a sensing element having a substrate and an antenna pattern disposed on one or more planar surfaces of the substrate is disclosed. The cable is fed substantially parallel to the planar surfaces of the substrate and is attached to the side surface of the substrate, such that the cable is oriented substantially perpendicular to the direction of the electromagnetic field emitted from the sensing element.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Boris Leonid Sheikman, Steven Go, Joseph Lee Whiteley, Nathan Andrew Weller, Susan Lee Roush, Yongjae Lee
  • Publication number: 20140090451
    Abstract: A system includes a vessel system for a fluid, a sampling assembly and a resonant sensor system coupled to the sampling assembly. The resonant sensor system may include a subsystem that detects a set of signals from a resonant sensor system at a plurality of locations in the vessel. The resonant sensor system may also include a subsystem that converts the set of signals to values of a complex impedance spectrum for the plurality of locations and stores the values of the complex impedance spectrum and frequency values. A subsystem determines a fluid phase inversion point from the values of the complex impedance spectrum.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Cheryl Margaret Surman, William Chester Platt, William Guy Morris, Steven Go, Jon Albert Dieringer, Radislav A. Potyrailo
  • Publication number: 20140090454
    Abstract: A sensor includes a resonant transducer, the resonant transducer being configured to determine the composition of an emulsion. The composition of the emulsion is determined by measuring the complex impedance spectrum values of the mixture of the emulsion and applying multivariate data analysis to the values.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Cheryl Margaret Surman, William Chester Platt, William Guy Morris, Steven Go, Jon Albert Dieringer, Radislav A. Potyrailo