Patents by Inventor Steven J. Hamrock

Steven J. Hamrock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090269644
    Abstract: Materials are provided that may be useful as ionomers or polymer ionomers, including compounds including bis sulfonyl imide groups which may be highly fluorinated and may be polymers.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Inventors: Steven J. Hamrock, Mark S. Schaberg, Neeraj Sharma, John E. Abulu
  • Publication number: 20090208809
    Abstract: This disclosure provides polymer electrolytes, polymer electrolyte membranes (PEM's) and membrane electrode assemblies (MEA's) such as may be useful in fuel cells which contain or comprise polyoxometalates (POM's) or heteropolyacids (HPA's). In some embodiments the polyoxometalate, it's counterions or both may comprise Mn and/or Ce. In some embodiments the polymer electrolyte is fluorinated. In some embodiments the polymer electrolyte comprises a second acidic functional group other than a polyoxometalate. In another aspect, the present disclosure provides methods of making polymer electrolytes including methods which comprising a step of copolymerizing monomers comprising a covalently bound polyoxometalates and methods which comprise a step of covalently attaching a polyoxometalate to the polymer.
    Type: Application
    Filed: November 7, 2008
    Publication date: August 20, 2009
    Inventors: Steven J. HAMROCK, Matthew H. FREY, Michael A. YANDRASITS, Gregory M. HAUGEN, Andrew M. HERRING, James L. HORAN, Niccolo V. AIETA
  • Patent number: 7572534
    Abstract: Fuel cell membrane electrode assemblies and fuel cell polymer electrolyte membranes are provided comprising bound anionic functional groups and polyvalent cations, such as Mn or Ru cations, which demonstrate increased durability. Methods of making same are also provided.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: August 11, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Steven J. Hamrock, Gregory M. Haugen, Phat T. Pham
  • Publication number: 20090169949
    Abstract: A catalyst ink is provided comprising: a) solids, comprising: i) a catalyst material, and ii) a polymer electrolyte; b) an aqueous solvent; and c) a coalescing solvent. In some embodiments, the coalescing solvent is selected from the group consisting of alkanes, alkenes, amines, ethers, and aromatic compounds which may optionally be substituted. In some embodiments, the coalescing solvent is selected from the group consisting of partially fluorinated alkanes, partially fluorinated tertiary amines, fully fluorinated alkanes and fully fluorinated tertiary amines. In another aspect, the present disclosure provides a fuel cell membrane electrode assembly comprising a catalyst layer comprising a coalescing solvent.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Inventors: Michael T. HICKS, Steven J. HAMROCK, Eric J. HANSON, Theresa M. WATSCHKE, Mark S. SCHABERG
  • Publication number: 20090169959
    Abstract: A fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane comprising a first polymer electrolyte and at least one manganese compound; and one or more electrode layers comprising a catalyst and at least one cerium compound. The membrane electrode assembly demonstrates an unexpected combination of durability and performance.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Inventors: Daniel M. PIERPONT, Steven J. Hamrock, Matthew H. Frey
  • Patent number: 7517604
    Abstract: An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: April 14, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Steven J. Hamrock, James M. Larson, Phat T. Pham, Matthew H. Frey, Gregory M. Haugen, William M. Lamanna
  • Patent number: 7514481
    Abstract: A method of making a crosslinked polymer is provided as well as the polymer so made, the method comprising the steps of: providing a highly fluorinated fluoropolymer, typically a perfluorinated fluoropolymer, comprising pendent groups which include a group according to the formula —SO2X, where X is F, Cl, Br, OH, or —O?M+, where M+ is a monovalent cation, and exposing said fluoropolymer to electron beam radiation so as to result in the formation of crosslinks. Typically, the method according to the present invention additionally comprises the step of: forming said fluoropolymer into a membrane, typically having a thickness of 90 microns or less, more typically 60 microns or less, and most typically 30 microns or less.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: April 7, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Naiyong Jing
  • Patent number: 7435498
    Abstract: A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, by trimerization of nitrile groups contained on groups pendant from the polymer. The resulting polymer electrolyte membrane comprises a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonic acid groups, and crosslinks comprising trivalent groups according to the formula: The first pendent groups are typically according to the formula: —R1—SO3H, where R1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms, most typically —O—CF2—CF2—CF2—CF2—SO3H or —O—CF2—CF(CF3)—O—CF2—CF2—SO3H.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: October 14, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Werner M. Grootaert, Miguel A. Guerra, Naiyong Jing
  • Publication number: 20080160380
    Abstract: A method of making a durable fuel cell polymer electrolyte membrane is provided comprising the steps of: a) providing a polymer electrolyte membrane; b) providing a solution of a salt selected from the group consisting of manganese salts and cerium salts or a suspension of particles of a compound selected from the group consisting of manganese oxides and cerium oxides; and c) applying the solution or suspension to the polymer electrolyte membrane by a method selected from the group consisting of brushing, spraying and use of a slot die. Some embodiments comprise metered application of the solution to the polymer electrolyte membrane.
    Type: Application
    Filed: December 21, 2007
    Publication date: July 3, 2008
    Inventor: Steven J. HAMROCK
  • Patent number: 7338692
    Abstract: Shaped microporous articles are produced from polyvinylidene fluoride (PVDF) and nucleating agents using thermally induced phase separation (TIPS) processes. The shaped microporous article is oriented in at least one direction at a stretch ratio of at least approximately 1.1 to 1.0. The shaped article may also comprise a diluent, glyceryl triacetate. The shaped microporous article may also have the micropores filled with a sufficient quantity of ion conducting electrolyte to allow the membrane to function as an ion conductive membrane. The method of making a microporous article comprises the steps of melt blending polyvinylidene fluoride, nucleating agent and glyceryl triacetate; forming a shaped article of the mixture; cooling the shaped article to cause crystallization of the polyvinylidene fluoride and phase separation of the polyvinylidene fluoride and glyceryl triacetate; and stretching the shaped article in at least one direction at a stretch ratio of at least approximately 1.1 to 1.0.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: March 4, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Samantha D. Smith, Gene H. Shipman, Robert M. Floyd, Harold Todd Freemyer, Steven J. Hamrock, Michael A. Yandrasits, David G. S. Walton
  • Patent number: 7304101
    Abstract: Anionic species are removed from aqueous dispersions of ionic fluoropolymers using anion exchange resins. In some embodiments, cationic species are also removed using cation exchange resins.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 4, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Klaus Hintzer, Kai H. Lochhaas, Tanja Zeif, Steven J. Hamrock, Harold T. Freemyer
  • Patent number: 7285349
    Abstract: Polymer electrolyte membranes such as are used in fuel cells are provided along with methods of their manufacture. The polymer electrolyte membranes comprise polymers or blends of polymers having an equivalent weight of less than 1200 and a Tg of between 101° C. and 155° C.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: October 23, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Steven J. Hamrock, Linda M. Rivard, Michael A. Yandrasits, Daniel M. Pierpont
  • Patent number: 7265162
    Abstract: A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, as well as the polymer so made, the method comprising application of electron beam radiation to a highly fluorinated fluoropolymer comprising: a backbone derived in part from tetrafluoro-ethylene monomer, first pendent groups which include a group according to the formula —SO2X, where X is F, Cl, Br, OH or —O?M+, where M+ is a monovalent cation, and second pendent groups which include Br, Cl or I. Typically, the membrane has a thickness of 90 microns or less, more typically 60 or less, and most typically 30 microns or less.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: September 4, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Klaus Hintzer, Arne Thaler, Tatsuo Fukushi, Naiyong Jing, Kai Helmut Lochhaas
  • Patent number: 7214740
    Abstract: The present invention is a fluoropolymer comprising a plurality of pendent groups terminating in —CF2SO3X, —CF2SO2F, or combinations thereof, where X is selected from a group consisting of H+ and a monovalent cation, and at least one —CF2Y end group, where Y is selected from a group consisting of a chlorine atom, a bromine atom, an iodine atom, a nitrile group, and an —SO3X group.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: May 8, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Kai H. Lochhaas, Klaus Hintzer, Steven J. Hamrock, Michael A. Yandrasits
  • Patent number: 7179847
    Abstract: A method of making a crosslinked polymer is provided as well as the polymer so made, the method comprising the steps of: providing a highly fluorinated fluoropolymer, typically a perfluorinated fluoropolymer, comprising pendent groups which include a group according to the formula —SO2X, where X is F, Cl, Br, OH, or —O?M+, where M+ is a monovalent cation, and exposing said fluoropolymer to electron beam radiation so as to result in the formation of crosslinks. Typically, the method according to the present invention additionally comprises the step of: forming said fluoropolymer into a membrane, typically having a thickness of 90 microns or less, more typically 60 microns or less, and most typically 30 microns or less.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: February 20, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Naiyong Jing
  • Patent number: 7160928
    Abstract: Methods are provided to make acid functional fluoropolymers by: a) dehydrofluorinating a starting fluoropolymer with a dehydrofluorinating agent to form an unsaturated fluoropolymer; b) adding an acidifiable nucleophilic functionalizing agent to a double bond of the unsaturated fluoropolymer; and c) acidifying the added acidifiable function. Acid functional fluoropolymers and ion conducting membranes thereof are also provided, including acid functional fluoropolymer having pendent groups according to the formula: —X—Ar—An, wherein X is selected from O, S or NR, where R is selected from H and C1–C30 alkyl or aryl, which are optionally substituted, wherein Ar is a C6–C30 aromatic group, which is optionally substituted, wherein A is an acidic function or salt thereof, wherein a can be independently chosen to be 1, 2 or 3.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: January 9, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Steven J. Hamrock, Naiyong Jing, Shane S. Mao, L. Charles Hardy
  • Patent number: 7112614
    Abstract: A method is provided for obtaining crosslinked polymers, particularly fluorinated polymers having pendent sulfonic acid groups, by crosslinking through pendent groups which include a sulfonyl chloride group (—SO2Cl). The sulfonyl chloride group may be removed by application of electromagnetic radiation, typically in the ultraviolet band, or a radical initiator, leaving behind a radical which readily binds covalently to other polymer strands or to crosslinking agents to form crosslinks. Typically, the polymer is made by providing a polymer comprising pendent groups which include a group according to the formula —SO2F and converting at least a portion of the —SO2F groups to —SO2Cl. After crosslinking, the remaining —SO2F groups may be converted to sulfonic acid groups, yielding a crosslinked polymer electrolyte. Such crosslinked polymer electrolytes may be used to make polymer electrolyte membranes (PEM's) that may be used in electrolytic cells such as fuel cells.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: September 26, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Steven J. Hamrock
  • Patent number: 7074841
    Abstract: A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, by trimerization of nitrile groups contained on groups pendant from the polymer. The resulting polymer electrolyte membrane comprises a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonic acid groups, and crosslinks comprising trivalent groups according to the formula: The first pendent groups are typically according to the formula: —R1—SO3H, where R1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1–15 carbon atoms and 0–4 oxygen atoms, most typically —O—CF2—CF2—CF2—CF2—SO3H or —O—CF2—CF(CF3)—O—CF2—CF2—SO3H.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: July 11, 2006
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Werner M. Grootaert, Miguel A. Guerra, Naiyong Jing
  • Patent number: 7071271
    Abstract: A method is provided for aqueous emulsion co-polymerization of two or more fluoromonomers comprising the steps of: 1) forming an aqueous pre-emulsion by mixing a fluoromonomer according to formula I: F2C?CF—R1—SO2X??(I) wherein R1 is a branched or unbranched perfluoroalkyl, perfluoroalkoxy or perfluoroether group comprising 1–15 carbon atoms and 0–4 oxygen atoms and wherein X is F, Cl or Br, together with 0.001–0.9 molar equivalents of a base, in the absence of added emulsifier; and 2) reacting the pre-emulsion with one or more perfluorinated comonomers in the absence of added emulsifier so as to form a fluoropolymer latex comprising a fluoropolymer wherein more than 1 mol % of monomer units are derived from the fluoromonomer according to formula I. In another aspect, the present invention provides a fluoropolymer derived from the fluoropolymer latex made according to the method of the present invention which is free of added emulsifier.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: July 4, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Arne Thaler, Klaus Hintzer, Kai H. Lochhaas, Franz Maerz, Steven J. Hamrock
  • Patent number: 7060738
    Abstract: A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, as well as the polymer so made, the method comprising application of ultraviolet radiation to a highly fluorinated fluoropolymer comprising: a backbone derived in part from tetrafluoro-ethylene monomer, first pendent groups which include a group according to the formula —SO2X, where X is F, Cl, Br, OH or —O?M+, where M+ is a monovalent cation, and second pendent groups which include Br, Cl or I. Typically, the membrane has a thickness of 90 microns or less, more typically 60 or less, and most typically 30 microns or less.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 13, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Steven J. Hamrock, Michael A. Yandrasits