Patents by Inventor Steven J. Pontonio

Steven J. Pontonio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11529582
    Abstract: The present invention relates to a method for modifying the crystalline inorganic framework of an adsorbent with coatings to provide rate selectivity for one gas over others is described. The method described herein narrows the effective pore size of crystalline porous solids with pores less than about 5 ? for rate selective separations. This method of the invention comprises treating the hydrated or partially hydrated zeolite with a silicone derived binding agent followed by subsequent heat treatment. The additive content and treatment are adjusted to match effective pore size to specific separations. The superior adsorbent has the added convenience of bead forming simultaneously with pore modification as well as having the treatment result in the yielding of high crush strength products.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: December 20, 2022
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Steven J. Pontonio, Neil A. Stephenson, Philip A. Barrett, Nicholas R. Stuckert
  • Patent number: 11471820
    Abstract: The present invention generally relates to a pressure swing adsorption process for separating an adsorbate impurity from a feed stream comprising product gas, said process comprising feeding the feed stream to an adsorbent bed at a pressure of from about 60 psig to 2000 psig, wherein said adsorbent bed comprises adsorbent having: An isosteric heat of adsorption of from about 5 kJ/mol to about 30 kJ/mol, as determined by the LRC method, for the adsorbate, and an equivalent 65 kJ/mol or less isosteric heat of adsorption for the product, wherein the adsorbent has a rate of adsorption for the adsorbate impurity that is at least 10 times greater than the rate of adsorption for the product gas as determined by the TGA method and recovering said product gas with a reduced a level of said adsorbate impurity. The invention also related to an adsorbent useful in PSA separations, particularly separating N2 from methane, CO2 from methane O2 from N2 and the like.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 18, 2022
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Nicholas R. Stuckert, Neil A. Stephenson, Philip A. Barrett, Steven J. Pontonio
  • Publication number: 20210252482
    Abstract: The present invention relates to a surface modified zeolite adsorbent wherein the surface of said zeolite is modified with a coating comprised of a silicone derived species, said zeolite having a mean crystal size from about 5 to about 10 ?m and a skeletal density of ?1.10 gr./cc. The invention is based on the discovery that larger crystals tend to have higher particle density, and the packing of the larger crystals in agglomeration processes leads to more idealized packing to provide a larger mean-pore diameter. The surface modified adsorbent provides rate selectivity for one gas over others is described. The superior adsorbent has the added convenience of bead forming simultaneously with pore modification as well as having the treatment result in the yielding of high crush strength products.
    Type: Application
    Filed: July 1, 2019
    Publication date: August 19, 2021
    Inventors: Steven J. Pontonio, Philip A. Barrett, Neil A. Stephenson, Katie Held
  • Publication number: 20210031171
    Abstract: The invention relates to a superior core-in-shell adsorbent comprising adsorbent, and an inert core, wherein said core possesses a porosity less than 10%, and has a volumetric thermal capacity greater than 1 J/K*cc. The adsorbents of the invention possess good physical strength, and allow a longer cycle time, thereby reducing the blowdown (vent) losses compared to known adsorbents. The invention relates to an adsorber design for a vacuum/pressure swing adsorption (VSA, VPSA, PSA) process designed to obtain oxygen product from air utilizing the adsorbents of the invention.
    Type: Application
    Filed: February 14, 2019
    Publication date: February 4, 2021
    Inventors: Neil A. Stephenson, Philip A. Barrett, Steven J. Pontonio, Nicholas R. Stuckert
  • Publication number: 20210016218
    Abstract: The present invention generally relates to a process that utilizes tunable zeolite adsorbents in order to reduce the bed size for nitrogen removal from a methane (or a larger molecule) containing stream. The adsorbents are characterized by the rate of adsorption of nitrogen and methane and the result is a bed size that is up to an order of magnitude smaller with these characteristics (in which the rate selectivity is generally 30) than the corresponding bed size for the original tunable zeolite adsorbent that has a rate selectivity of >100x.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 21, 2021
    Inventors: Nicholas R. Stuckert, Steven J. Pontonio, Neil A. Stephenson, Philip A. Barrett
  • Publication number: 20210008487
    Abstract: The present invention generally relates to a pressure swing adsorption process for separating an adsorbate impurity from a feed stream comprising product gas, said process comprising feeding the feed stream to an adsorbent bed at a pressure of from about 60 psig to 2000 psig, wherein said adsorbent bed comprises adsorbent having: An isosteric heat of adsorption of from about 5 kJ/mol to about 30 kJ/mol, as determined by the LRC method, for the adsorbate, and an equivalent 65 kJ/mol or less isosteric heat of adsorption for the product, wherein the adsorbent has a rate of adsorption for the adsorbate impurity that is at least 10 times greater than the rate of adsorption for the product gas as determined by the TGA method and recovering said product gas with a reduced a level of said adsorbate impurity. The invention also related to an adsorbent useful in PSA separations, particularly separating N2 from methane, CO2 from methane O2 from N2 and the like.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Inventors: Nicholas R. Stuckert, Neil A. Stephenson, Philip A. Barrett, Steven J. Pontonio
  • Publication number: 20200368724
    Abstract: The present invention relates to a superior carbon adsorbent with or without a core. In one embodiment the carbon adsorbent of the present invention employs carbon adsorbent powder and an organic binding agent which are combined together with an appropriate solvent in an agglomeration step. In another embodiment the invention contemplates a core-in-shell adsorbent comprising an outer shell composed of a carbon and a non-adsorbing inert inner core. Low temperature processing of these agglomerates substantially preserves the binding agent within the final composition and allows one to prepare adsorbent products of high sphericity. The adsorbents of the invention possess superior characteristics such as higher mass transfer rate and CO2 working capacity for use in a H2PSA process.
    Type: Application
    Filed: February 14, 2019
    Publication date: November 26, 2020
    Inventors: Neil A. Stephenson, Philip A. Barrett, Steven J. Pontonio, Nicholas R. Stuckert, Garrett R. Swindlehurst
  • Publication number: 20200276534
    Abstract: The present invention relates to a method for modifying the crystalline inorganic framework of an adsorbent with coatings to provide rate selectivity for one gas over others is described. The method described herein narrows the effective pore size of crystalline porous solids with pores less than about 5 ? for rate selective separations. This method of the invention comprises treating the hydrated or partially hydrated zeolite with a silicone derived binding agent followed by subsequent heat treatment. The additive content and treatment are adjusted to match effective pore size to specific separations. The superior adsorbent has the added convenience of bead forming simultaneously with pore modification as well as having the treatment result in the yielding of high crush strength products.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 3, 2020
    Inventors: Steven J. Pontonio, Neil A. Stephenson, Philip A. Barrett, Nicholas R. Stuckert
  • Patent number: 10717035
    Abstract: The present invention relates to a method for modifying the crystalline inorganic framework of an adsorbent with coatings to provide rate selectivity for one gas over others is described. The method described herein narrows the effective pore size of crystalline porous solids with pores less than about 5A for rate selective separations. This method of the invention comprises treating the hydrated or partially hydrated zeolite with a silicone derived binding agent followed by subsequent heat treatment. The additive content and treatment are adjusted to match effective pore size to specific separations. The superior adsorbent has the added convenience of bead forming simultaneously with pore modification as well as having the treatment result in the yielding of high crush strength products.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: July 21, 2020
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Steven J. Pontonio, Neil A. Stephenson, Philip A. Barrett, Nicholas R. Stuckert
  • Patent number: 10646816
    Abstract: The present invention relates generally to an attrition resistant core-in-shell composite adsorbent comprising at least a zeolite-containing CO2 removal adsorbent and a binder on an inert dense core. The attrition resistant core-in-shell composite adsorbent has an attrition loss of less than about 2 wt %. The core-in-shell composite adsorbent is preferably used in a multi-layered adsorption system in a cyclic adsorption process, preferably used in a PSA prepurification process prior to cryogenic air separation.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 12, 2020
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Jian Zheng, Neil A. Stephenson, Steven J. Pontonio, Christopher D. Schotz, Philip A. Barrett
  • Publication number: 20180229175
    Abstract: The present invention relates to a method for modifying the crystalline inorganic framework of an adsorbent with coatings to provide rate selectivity for one gas over others is described. The method described herein narrows the effective pore size of crystalline porous solids with pores less than about 5A for rate selective separations. This method of the invention comprises treating the hydrated or partially hydrated zeolite with a silicone derived binding agent followed by subsequent heat treatment. The additive content and treatment are adjusted to match effective pore size to specific separations. The superior adsorbent has the added convenience of bead forming simultaneously with pore modification as well as having the treatment result in the yielding of high crush strength products.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 16, 2018
    Inventors: Steven J. Pontonio, Neil A. Stephenson, Philip A. Barrett, Nicholas R. Stuckert
  • Publication number: 20180178158
    Abstract: The present invention relates generally to an attrition resistant core-in-shell composite adsorbent comprising at least a zeolite-containing CO2 removal adsorbent and a binder on an inert dense core. The attrition resistant core-in-shell composite adsorbent has an attrition loss of less than about 2 wt %. The core-in-shell composite adsorbent is preferably used in a multi-layered adsorption system in a cyclic adsorption process, preferably used in a PSA prepurification process prior to cryogenic air separation.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 28, 2018
    Inventors: Jian Zheng, Neil A. Stephenson, Steven J. Pontonio, Christopher D. Schotz, Philip A. Barrett
  • Patent number: 9772139
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 26, 2017
    Assignee: Praxair Technology, Inc.
    Inventors: Persefoni E. Kechagia, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Patent number: 9457337
    Abstract: An optimal material composition that allows for the purification of at least one feed component from a fluid feed stream such that the adsorbent has an oxygen capacity of at least 10 weight percent is described. More specifically, the material is an adsorbent for purification of a fluid feed stream having an oxygen to argon selectivity greater than or equal to a ratio of 3:1 and an oxygen capacity of greater than or equal to 10 weight percent, wherein the oxygen capacity is measured at a pressure in the range of about 9-10 Torr and a temperature of 77 degrees Kelvin after 4 hours of equilibration time and wherein the oxygen to argon selectivity is obtained by dividing the oxygen capacity by the argon capacity of the adsorbent measured at a pressure in the range of about 697-700 Torr and a temperature of 87 degrees Kelvin after 8 hours of equilibration time. The adsorption capacities are measured on a pure component basis.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 4, 2016
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Philip A. Barrett, Steven J. Pontonio, Neil A. Stephenson, Persefoni E. Kechagia
  • Publication number: 20160084571
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 24, 2016
    Inventors: PERSEFONI E. KECHAGIA, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Patent number: 9222727
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 29, 2015
    Assignee: Praxair Technology, Inc.
    Inventors: Persefoni E. Kechagia, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Publication number: 20140249023
    Abstract: An optimal material composition that allows for the purification of at least one feed component from a fluid feed stream such that the adsorbent has an oxygen capacity of at least 10 weight percent is described. More specifically, the material is an adsorbent for purification of a fluid feed stream having an oxygen to argon selectivity greater than or equal to a ratio of 3:1 and an oxygen capacity of greater than or equal to 10 weight percent, wherein the oxygen capacity is measured at a pressure in the range of about 9-10 Torr and a temperature of 77 degrees Kelvin after 4 hours of equilibration time and wherein the oxygen to argon selectivity is obtained by dividing the oxygen capacity by the argon capacity of the adsorbent measured at a pressure in the range of about 697-700 Torr and a temperature of 87 degrees Kelvin after 8 hours of equilibration time. The adsorption capacities are measured on a pure component basis.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: Philip A. Barrett, Steven J. Pontonio, Neil A. Stephenson, Persefoni E. Kechagia
  • Publication number: 20140245781
    Abstract: The invention relates to a process for removing oxygen from liquid argon using a TSA (temperature swing adsorption) cyclical process that includes cooling an adsorbent bed to sustain argon in a liquid phase; supplying the adsorbent bed with a liquid argon feed that is contaminated with oxygen and purifying the liquid argon thereby producing an argon product with less oxygen contaminant than is in the initial liquid argon feed; draining the purified residual liquid argon product and sending purified argon out of the adsorbent bed. Regeneration of specially prepared adsorbent allows the adsorbent bed to warm up to temperatures that preclude the use of requiring either vacuum or evacuation of adsorbent from the bed.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: Persefoni E. Kechagia, Neil A. Stephenson, Philip A. Barrett, Hai Du, Steven J. Pontonio
  • Patent number: 7827854
    Abstract: The present invention generally relates to methods and kits for measuring and analyzing degradation of adsorbent materials, particularly for adsorbent materials used in gas separation processes. The present invention can assess the damage to adsorbent due to moisture contamination and it can assess damage that is not moisture-related. The advantage to the present invention is that it can detect degradation of adsorbent before the degradation affects production. Another advantage is that it can conclusively determine whether the sieve is damaged. Because it is so inexpensive to run, the test of the present invention can be conducted to determine adsorbent damage and to confirm whether the damage continues to be an issue. The present invention can test adsorbents in any form, including, but not limited to, bead, pellet or powder form.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: November 9, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Neil Andrew Stephenson, Phillip Alexander Barrett, Steven J. Pontonio, Michael T. Freiert, Jesus Gallego-Preciado Nieto
  • Patent number: 7827855
    Abstract: The present invention generally relates to methods and kits for measuring and analyzing degradation of adsorbent materials, particularly for adsorbent materials used in gas separation processes. The present invention can assess the damage to adsorbent due to contamination including moisture contamination and it can assess damage that is not contaminant-related. The advantage to the present invention is that it can detect degradation of adsorbent directly at the plant site before the degradation affects production. Another advantage is that it can conclusively determine whether the adsorbent is damaged. Because it is so inexpensive to run, the test of the present invention can be conducted to determine adsorbent damage and to confirm whether the damage continues to be an issue. The present invention can test adsorbents in any form, including, but not limited to, bead, pellet or powder form.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: November 9, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Neil Andrew Stephenson, Philip Alexander Barrett, Steven J. Pontonio, Michael T. Freiert, Jesus Gallego-Preciado Nieto