Patents by Inventor Steven J. Vance

Steven J. Vance has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240001963
    Abstract: Vehicles and related systems and methods are provided for controlling a vehicle in an autonomous operating mode. One method involves identifying a stationary object outside a current lane of travel based at least in part on sensor data captured onboard the vehicle, determining an estimated location for the stationary object based at least in part on the sensor data and a location of the vehicle and providing the estimated location to a remote system. The remote system updates lane preference information corresponding to the estimated location for the stationary object when the stationary object satisfies one or more avoidance criteria. The method continues by determining a trajectory for a vehicle to change lanes based at least in part on the updated lane preference information and autonomously operating one or more actuators onboard the vehicle in accordance with the trajectory.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey Pradeep Kinakar, Andrew Wassef, Tessa Benjamin, Steven J. Vance
  • Patent number: 9102014
    Abstract: A method of servicing an airfoil for use in a gas turbine engine. The airfoil assembly is defined by a base material and includes an airfoil and a platform from which the airfoil extends. A predetermined amount of the base material is removed from the airfoil assembly proximate to a fillet area of the airfoil assembly via water jet material removal. The fillet area comprises a junction between the airfoil and the platform and is located at an intersection between the airfoil and the platform. A remainder of the base material comprising base material of the airfoil assembly other than proximate to the fillet area is left intact.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: August 11, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Petya M. Georgieva, Harshawardhan S. Bhide, Thomas N. Silvey, Mrinal Munshi, Steven J. Vance
  • Patent number: 9024586
    Abstract: A battery cell by-pass circuit that has particular application for by-passing cells in a high voltage battery for a vehicle. The battery includes a plurality of battery cells electrically coupled in series. The by-pass circuit includes a first switch electrically coupled in series with one or more of the battery cells, a by-pass line electrically coupled around the one or more battery cells and a second switch electrically coupled in the by-pass line and in parallel with the one or more battery cells. During normal cell operation, the first switch is closed and the second switch is open so that current flows through the one or more battery cells. If the one or more battery cells fail or are failing, the first switch is opened and the second switch is closed so that current by-passes the one or more cells and they are removed from the battery circuit.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: May 5, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Vance, John T. Guerin, Andrew H. Leutheuser, John C. Mentzer
  • Patent number: 8471529
    Abstract: A by-pass circuit for a battery system that disconnects parallel connected cells or modules from a battery circuit or controls the current through the parallel connected cells or modules. If a cell has failed or is potentially failing in the system, then the by-pass circuit can disconnect the cell or module from other cells or modules electrically coupled in parallel. If a cell or module has a lower capability than another cell or module, then the by-pass circuit can control the current to the cell or module to maximize the performance of the system and prevent the system from creating a walk-home condition.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Vance, John T. Guerin, Andrew H. Leutheuser, John C. Mentzer
  • Publication number: 20120091963
    Abstract: A by-pass circuit for a battery system that disconnects parallel connected cells or modules from a battery circuit or controls the current through the parallel connected cells or modules. If a cell has failed or is potentially failing in the system, then the by-pass circuit can disconnect the cell or module from other cells or modules electrically coupled in parallel. If a cell or module has a lower capability than another cell or module, then the by-pass circuit can control the current to the cell or module to maximize the performance of the system and prevent the system from creating a walk-home condition.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS,INC.
    Inventors: Steven J. Vance, John T. Guerin, Andrew H. Leutheuser, John C. Mentzer
  • Publication number: 20120091964
    Abstract: A battery cell by-pass circuit that has particular application for by-passing cells in a high voltage battery for a vehicle. The battery includes a plurality of battery cells electrically coupled in series. The by-pass circuit includes a first switch electrically coupled in series with one or more of the battery cells, a by-pass line electrically coupled around the one or more battery cells and a second switch electrically coupled in the by-pass line and in parallel with the one or more battery cells. During normal cell operation, the first switch is closed and the second switch is open so that current flows through the one or more battery cells. If the one or more battery cells fail or are failing, the first switch is opened and the second switch is closed so that current by-passes the one or more cells and they are removed from the battery circuit.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Steven J. Vance, John T. Guerin, Andrew H. Leutheuser, John C. Mentzer
  • Publication number: 20110308085
    Abstract: A method of servicing an airfoil for use in a gas turbine engine. The airfoil assembly is defined by a base material and includes an airfoil and a platform from which the airfoil extends. A predetermined amount of the base material is removed from the airfoil assembly proximate to a fillet area of the airfoil assembly via water jet material removal. The fillet area comprises a junction between the airfoil and the platform and is located at an intersection between the airfoil and the platform. A remainder of the base material comprising base material of the airfoil assembly other than proximate to the fillet area is left intact.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 22, 2011
    Inventors: Petya M. Georgieva, Harshawardhan S. Bhide, Thomas N. Silvey, Mrinal Munshi, Steven J. Vance
  • Patent number: 8033790
    Abstract: A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: October 11, 2011
    Assignee: Siemens Energy, Inc.
    Inventor: Steven J. Vance
  • Patent number: 7819625
    Abstract: A pattern of depressions (36) in a sealing surface (34) on a CMC wall (32) of gas turbine ring segment (30) allows minimum clearance against turbine blades tips, and thus maximizes working gas sealing. An array of depressions (36) on the surface (34) increases abradability of the surface (34) by blade tip contact during zero clearance conditions and reduces blade tip damage. The depressions (36) are unconnected, preventing bypass of the working gas around the blade tips. A desired abradable surface geometry may be formed in a stacked laminate wall construction (40-43, 52) by staggered laminate edge profiles (50, 52) or by machining of depressions (36, 54) after construction.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: October 26, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Gary B. Merrill, Steven J. Vance
  • Patent number: 7753643
    Abstract: A ceramic ring segment for a turbine engine that may be used as a replacement for one or more metal components. The ceramic ring segment may be formed from a plurality of ceramic plates, such as ceramic matrix composite plates, that are joined together using a strengthening mechanism to reinforce the ceramic plates while permitting the resulting ceramic article to be used as a replacement for components for turbine systems that are typically metal, thereby taking advantage of the properties provided by ceramic materials. The strengthening mechanism may include a bolt or a plurality of bolts designed to prevent delamination of the ceramic plates when in use by keeping the ceramic plates in compression.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: July 13, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Malberto F. Gonzalez, David C. Radonovich, Anthony L. Schiavo, Jay A. Morrison, Steven J. Vance
  • Publication number: 20100150703
    Abstract: A ceramic ring segment for a turbine engine that may be used as a replacement for one or more metal components. The ceramic ring segment may be formed from a plurality of ceramic plates, such as ceramic matrix composite plates, that are joined together using a strengthening mechanism to reinforce the ceramic plates while permitting the resulting ceramic article to be used as a replacement for components for turbine systems that are typically metal, thereby taking advantage of the properties provided by ceramic materials. The strengthening mechanism may include a bolt or a plurality of bolts designed to prevent delamination of the ceramic plates when in use by keeping the ceramic plates in compression.
    Type: Application
    Filed: September 22, 2006
    Publication date: June 17, 2010
    Inventors: Malberto F. Gonzalez, David C. Radonovich, Anthony L. Schiavo, Jay A. Morrison, Steven J. Vance
  • Patent number: 7726936
    Abstract: Aspects of the invention relate to a ring seal for a turbine engine. The ring seal can be made up of a plurality of circumferentially abutted ring seal segments. Each ring seal segment can comprise a plurality of individual channels. The channels can be generally U-shaped in cross-section with a forward span, and aft span and an extension connecting therebetween. The channels can be positioned such that the aft span of one channel can substantially abut the forward span of another channel. The plurality of separate channels can be detachably coupled to each other by, for example, a plurality of pins. The ring seal segment according to aspects of the invention can facilitate numerous advantageous characteristics including greater material selection, selective cooling, improved serviceability, and reduced blade tip leakage. Moreover, the configuration is well suited to handle the operational loads of the turbine.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 1, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Douglas A. Keller, Steven J. Vance, Christian X. Campbell
  • Publication number: 20100104426
    Abstract: Aspects of the invention relate to a ring seal for a turbine engine. The ring seal can be made up of a plurality of circumferentially abutted ring seal segments. Each ring seal segment can comprise a plurality of individual channels. The channels can be generally U-shaped in cross-section with a forward span, and aft span and an extension connecting therebetween. The channels can be positioned such that the aft span of one channel can substantially abut the forward span of another channel. The plurality of separate channels can be detachably coupled to each other by, for example, a plurality of pins. The ring seal segment according to aspects of the invention can facilitate numerous advantageous characteristics including greater material selection, selective cooling, improved serviceability, and reduced blade tip leakage. Moreover, the configuration is well suited to handle the operational loads of the turbine.
    Type: Application
    Filed: July 25, 2006
    Publication date: April 29, 2010
    Inventors: Douglas A. Keller, Steven J. Vance, Christian X. Campbell
  • Publication number: 20100080687
    Abstract: A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Applicant: SIEMENS POWER GENERATION, INC.
    Inventor: Steven J. Vance
  • Patent number: 7600978
    Abstract: A CMC airfoil (20) formed with CMC stitches (37) interconnected between opposed walls (26, 28) of the airfoil to restrain outward flexing of the walls resulting from pressurized cooling air within the airfoil. The airfoil may be formed of a ceramic fabric infused with a ceramic matrix and dried, and may be partially to fully cured. Then holes (32, 34) are formed in the opposed walls of the airfoil, and a ceramic stitching element such as ceramic fibers (36) or a ceramic tube (44) is threaded through the holes. The stitching element is infused with a wet ceramic matrix before or after threading, and is flared (38) or otherwise anchored to the walls (26, 28) to form a stitch (37) there between. The airfoil and stitch are then cured. If the airfoil is cured before stitching, a pre-tension is formed in the stitch due to relative curing shrinkage.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: October 13, 2009
    Assignee: Siemens Energy, Inc.
    Inventors: Steven J. Vance, Jay A. Morrison
  • Patent number: 7452182
    Abstract: Aspects of the invention relate to a modular turbine vane assembly. The vane assembly includes an airfoil portion, an outer shroud and an inner shroud. The airfoil portion can be made of at least two segments. Preferably, the components are connected together so as to permit assembly and disassembly of the vane. Thus, in the event of damage to the vane, repair involves the replacement of only the damaged subcomponents as opposed to the entire vane. The modular design facilitates the use of various materials in the vane, including materials that are dissimilar. Thus, suitable materials can be selected to optimize component life, cooling air usage, aerodynamic performance, and cost. Because the vane is an assemblage of smaller sub-components as opposed to one unitary structure, the individual components of the vane can be more easily manufactured and more intricate features can be included.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: November 18, 2008
    Assignee: Siemens Energy, Inc.
    Inventors: Steven J. Vance, Allister W. James
  • Publication number: 20080279678
    Abstract: A pattern of depressions (36) in a sealing surface (34) on a CMC wall (32) of gas turbine ring segment (30) allows minimum clearance against turbine blades tips, and thus maximizes working gas sealing. An array of depressions (36) on the surface (34) increases abradability of the surface (34) by blade tip contact during zero clearance conditions and reduces blade tip damage. The depressions (36) are unconnected, preventing bypass of the working gas around the blade tips. A desired abradable surface geometry may be formed in a stacked laminate wall construction (40-43, 52) by staggered laminate edge profiles (50, 52) or by machining of depressions (36, 54) after construction.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 13, 2008
    Inventors: Gary B. Merrill, Steven J. Vance
  • Publication number: 20080206542
    Abstract: A ceramic matrix composite with an enhanced abradability has a patterned surface with an array of solid composite material and voids where the voids extend into but not through the composite. The flow of gas through the voids as the surface is traversed by an impinging component, such as a turbine blade tip, is inhibited by the shape and size of the voids which can be sealed by the passing blade tip. Separately or additionally the inhibition of gas flow can result from the filling of the voids with a ceramic material of higher abradability than the ceramic matrix composite.
    Type: Application
    Filed: February 22, 2007
    Publication date: August 28, 2008
    Inventors: Steven J. Vance, Gary B. Merrill
  • Publication number: 20080025838
    Abstract: Aspects of the invention are directed to a ceramic matrix composite ring seal segment. The ring seal segment according to aspects of the invention includes a relatively simple body that is circumferentially curved. At least a portion of the hot gas path surface of the ring seal segment can be coated with a thermal insulating. material. In one embodiment, each ring seal segment can be operatively connected to a stationary support structure, such as by way of isolation rings. The ring seal segments and/or the isolation rings can be configured so as to restrain the ring seal segments in the axial, radial and/or circumferential directions. The ring seal segments can be attached to the isolation rings so that the support points act opposite the operating pressure loads. Thus, the ring seal segments carry these loads in compression, a strong direction of the CMC fibers.
    Type: Application
    Filed: July 25, 2006
    Publication date: January 31, 2008
    Inventors: Bonnie D. Marini, Douglas A. Keller, David C. Radonovich, Gary B. Merrill, Steven J. Vance, Anthony L. Schiavo
  • Publication number: 20080025846
    Abstract: A CMC airfoil (20) formed with CMC stitches (37) interconnected between opposed walls (26, 28) of the airfoil to restrain outward flexing of the walls resulting from pressurized cooling air within the airfoil. The airfoil may be formed of a ceramic fabric infused with a ceramic matrix and dried, and may be partially to fully cured. Then holes (32, 34) are formed in the opposed walls of the airfoil, and a ceramic stitching element such as ceramic fibers (36) or a ceramic tube (44) is threaded through the holes. The stitching element is infused with a wet ceramic matrix before or after threading, and is flared (38) or otherwise anchored to the walls (26, 28) to form a stitch (37) there between. The airfoil and stitch are then cured. If the airfoil is cured before stitching, a pre-tension is formed in the stitch due to relative curing shrinkage.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 31, 2008
    Inventors: Steven J. Vance, Jay A. Morrison