Patents by Inventor Steven Jude Duclos

Steven Jude Duclos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7084403
    Abstract: Scintillator materials based on certain types of halide-lanthanide matrix materials are described. In one embodiment, the matrix material contains a mixture of lanthanide halides, i.e., a solid solution of at least two of the halides, such as lanthanum chloride and lanthanum bromide. In another embodiment, the matrix material is based on lanthanum iodide alone, which must be substantially free of lanthanum oxyiodide. The scintillator materials, which can be in monocrystalline or polycrystalline form, also include an activator for the matrix material, e.g., cerium. Radiation detectors that use the scintillators are also described, as are related methods for detecting high-energy radiation.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: August 1, 2006
    Assignee: General Electric Company
    Inventors: Alok Mani Srivastava, Steven Jude Duclos, Qun Deng, James Walter Leblanc, Tie Bond Gao, Jian Min Wang, Lucas Lemar Clarke
  • Patent number: 6911251
    Abstract: An optically nonisotropic composite material. The composite material includes two materials, a transparent bulk optical material and radiation absorbing or reflecting fibers embedded within the bulk material. The fibers are substantially parallel to one another and tend to channel the radiation along the direction of the fibers. The bulk material may be a scintillator, in which case the fibers will tend to channel scintillating radiation along the direction of the fibers. The composite material may be used in a high spatial resolution x-ray device, such as a CT scanner. The composite material may also be used in an electromagnetic radiation detection device. Advantageously, the fibers tend to channel radiation along the fibers towards photodetector cells of the radiation detection device thereby increasing spatial resolution.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 28, 2005
    Assignee: General Electric Company
    Inventor: Steven Jude Duclos
  • Patent number: 6777724
    Abstract: A light-emitting device includes an anode, a cathode, and at least one organic electroluminescent (“EL”) material positioned between the anode and the cathode. Nanoparticles of at least one photoluminescent material are dispersed in the organic EL material. The organic EL material emits a first electromagnetic (“EM”) radiation having a first spectrum in response to an applied electrical field. The PL material absorbs a portion of the first EM radiation emitted by the organic EL material and emits a second EM radiation having a second spectrum. A plurality of the light-emitting devices are arranged on a transparent substrate to provide a panel display or a lighting source.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: August 17, 2004
    Assignee: General Electric Company
    Inventors: Anil Raj Duggal, Alok Mani Srivastava, Steven Jude Duclos
  • Patent number: 6707046
    Abstract: A photodiode detector array includes a layer of intrinsic semiconductor material having a first doped layer on a first surface of a first conductivity type and an array of photodiodes having respective doped regions on a second surface of an opposite conductivity type. Electrical contacts on the second surface respectively contact the doped regions and convey electrical signal therefrom. Conductors extend from the electrical contacts to convey the electrical signals to output terminals of the array. A scintillator is optically coupled to the layer of intrinsic semiconductor material at the first surface thereof and can be pixelated, with individual scintillator elements aligned with and corresponding to the doped regions of the photodiode. The photodiode detector array can be mounted to a rigid printed wiring board or to a flat bottom wall surface of the scintillator.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: March 16, 2004
    Assignee: General Electric Company
    Inventors: George Edward Possin, David Michael Hoffman, Bing Shen, Steven Jude Duclos
  • Patent number: 6635363
    Abstract: A light source (10) includes a light emitting component (32), such as a UV/blue light emitting diode or laser diode. A layer (62, 162, 262, 362) of a phosphor material is spaced from the light emitting component by a layer (60, 160, 260, 360) of a material which is transmissive to the light emitted by the light emitting component. The phosphor material converts a portion of the light emitted by the light emitting component to light of a longer wavelength such as yellow light. In a preferred embodiment, the light transmissive layer valise in thickness over the light emitting component so that the phosphor is spaced further from the diode in regions where the emission is higher. This increases the Surface area of the phosphor in these regions and minimizes the effects of overheating and saturation on the phosphor emission.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: October 21, 2003
    Assignee: General Electric Company
    Inventors: Steven Jude Duclos, Jon Jansma, Jacob C. Bortscheller, Robert J. Wojnarowski
  • Publication number: 20030127630
    Abstract: The present invention provides terbium or lutetium garnet x ray scintillators activated with a rare earth metal ion, such as cerium, and treated by annealing in a controlled atmosphere comprising a predetermined amount of oxygen for a predetermined time and temperature to reduce radiation damage that would otherwise occur when the scintillator material is exposed to high energy radiation, such as the type of radiation required to use the scintillator for medical radiographic imaging and the like. In an embodiment, a single crystal or a polycrystalline scintillator comprising the general formula (Tb1−xLuxCey)3Al5O12 (where 0<x≦0.5, and y is in the range from about 0.0005 to about 0.2, and annealed at 1400° C. to 1500° C. in a controlled atmosphere comprising 1×10−6 to 0.22 atm oxygen shows an increased resistance to radiation damage.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 10, 2003
    Inventors: James Scott Vartuli, Steven Jude Duclos, Robert Joseph Lyons, Charles David Greskovich
  • Publication number: 20030122083
    Abstract: A photodiode detector array includes a layer of intrinsic semiconductor material having a first doped layer on a first surface of a first conductivity type and an array of photodiodes having respective doped regions on a second surface of an opposite conductivity type. Electrical contacts on the second surface respectively contact the doped regions and convey electrical signal therefrom. Conductors extend from the electrical contacts to convey the electrical signals to output terminals of the array. A scintillator is optically coupled to the layer of intrinsic semiconductor material at the first surface thereof and can be pixelated, with individual scintillator elements aligned with and corresponding to the doped regions of the photodiode. The photodiode detector array can be mounted to a rigid printed wiring board or to a flat bottom wall surface of the scintillator.
    Type: Application
    Filed: January 3, 2002
    Publication date: July 3, 2003
    Applicant: General Electric Company
    Inventors: George Edward Possin, David Michael Hoffman, Bing Shen, Steven Jude Duclos
  • Publication number: 20030094626
    Abstract: A light-emitting device includes an anode, a cathode, and at least one organicpositioned between the anode and the cathode. Nanoparticles of at least one photoluminescent material are dispersed in the organic EL material. The organic EL material emits a first electromagnetic (“EM”) radiation having a first spectrum in response to an applied electrical field. The PL material absorbs a portion of the first EM radiation emitted by the organic EL material and emits a second EM radiation having a second spectrum. A plurality of the light-emitting devices are arranged on a transparent substrate to provide a panel display or a lighting source.
    Type: Application
    Filed: November 15, 2002
    Publication date: May 22, 2003
    Inventors: Anil Raj Duggal, Alok Mani Srivastava, Steven Jude Duclos
  • Patent number: 6519313
    Abstract: A scintillator pack comprises an array of scintillator pixels and an x-ray absorbing layer disposed in inter-scintillator regions between the scintillator pixels. The x-ray absorbing layer acts to absorb x-rays and protect underlying regions of the inter-scintillator regions. The x-ray absorbing layer may be formed by a number of methods including casting and melt infiltration.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventors: Venkat Subramaniam Venkataramani, Steven Jude Duclos
  • Patent number: 6515314
    Abstract: A light-emitting device includes an anode, a cathode, and at least one organic electroluminescent (“EL”) material positioned between the anode and the cathode. Nanoparticles of at least one photoluminescent material are dispersed in the organic EL material. The organic EL material emits a first electromagnetic (“EM”) radiation having a first spectrum in response to an applied electrical field. The PL material absorbs a portion of the first EM radiation emitted by the organic EL material and emits a second EM radiation having a second spectrum. A plurality of the light-emitting devices are arranged on a transparent substrate to provide a panel display or a lighting source.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: February 4, 2003
    Assignee: General Electric Company
    Inventors: Anil Raj Duggal, Alok Mani Srivastava, Steven Jude Duclos
  • Publication number: 20030021374
    Abstract: A scintillator pack comprises an array of scintillator pixels and an x-ray absorbing layer disposed in inter-scintillator regions between the scintillator pixels. The x-ray absorbing layer acts to absorb x-rays and protect underlying regions of the inter-scintillator regions. The x-ray absorbing layer may be formed by a number of methods including casting and melt infiltration.
    Type: Application
    Filed: September 27, 2002
    Publication date: January 30, 2003
    Inventors: Venkat Subramaniam Venkataramani, Steven Jude Duclos
  • Patent number: 6496250
    Abstract: A method of preparing and testing an array of ceramics for optical properties, comprising: providing a host material that is capable of being made optically transparent or translucent upon sintering; forming the host material into an array of pixels attached to a base plate; doping the host material; reacting the host material and the dopant, to form an array of products; and testing the products for optical properties.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: December 17, 2002
    Assignee: General Electric Company
    Inventors: Steven Jude Duclos, Charles David Greskovich
  • Publication number: 20020181647
    Abstract: A scintillator pack comprises an array of scintillator pixels and an x-ray absorbing layer disposed in inter-scintillator regions between the scintillator pixels. The x-ray absorbing layer acts to absorb x-rays and protect underlying regions of the inter-scintillator regions. The x-ray absorbing layer may be formed by a number of methods including casting and melt infiltration.
    Type: Application
    Filed: May 30, 2001
    Publication date: December 5, 2002
    Inventors: Venkat Subramaniam Venkataramani, Steven Jude Duclos
  • Publication number: 20020102395
    Abstract: An optically nonisotropic composite material. The composite material includes two materials, a transparent bulk optical material and radiation absorbing or reflecting fibers embedded within the bulk material. The fibers are substantially parallel to one another and tend to channel the radiation along the direction of the fibers. The bulk material may be a scintillator, in which case the fibers will tend to channel scintillating radiation along the direction of the fibers. The composite material may be used in a high spatial resolution x-ray device, such as a CT scanner. The composite material may also be used in an electromagnetic radiation detection device. Advantageously, the fibers tend to channel radiation along the fibers towards photodetector cells of the radiation detection device thereby increasing spatial resolution.
    Type: Application
    Filed: March 15, 2002
    Publication date: August 1, 2002
    Inventor: Steven Jude Duclos
  • Patent number: 6402987
    Abstract: A Y(P,V)O4:Eu3+ red emitting phosphor is doped with at least one of a trivalent rare earth ion excluding Eu and a divalent metal ion to improve the lumen maintenance of the phosphor. The preferred material is the Y(P,V)O4:Eu3+ phosphor doped with trivalent Tb3+ ions and divalent Mg2+ ions.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: June 11, 2002
    Assignee: General Electric Company
    Inventors: Alok Mani Srivastava, Charles David Greskovich, Steven Jude Duclos, Holly Ann Comanzo, William Winder Beers
  • Patent number: 6391434
    Abstract: An optically nonisotropic composite material. The composite material includes two materials, a transparent bulk optical material and radiation absorbing or reflecting fibers embedded within the bulk material. The fibers are substantially parallel to one another and tend to channel the radiation along the direction of the fibers. The bulk material may be a scintillator, in which case the fibers will tend to channel scintillating radiation along the direction of the fibers. The composite material may be used in a high spatial resolution x-ray device, such as a CT scanner. The composite material may also be used in an electromagnetic radiation detection device. Advantageously, the fibers tend to channel radiation along the fibers towards photodetector cells of the radiation detection device thereby increasing spatial resolution.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: May 21, 2002
    Assignee: General Electric Company
    Inventor: Steven Jude Duclos
  • Patent number: 6361735
    Abstract: The invention relates to a method of forming a composite article comprising the steps of forming a plurality of green ceramic elements, wherein the green ceramic elements are arranged side by side, and the green ceramic elements are spaced from each other by gaps; filling the gaps with a second material; and sintering the green ceramic elements with the second material to form the composite article. The second material, after being sintered, acts as a reflector layer to prevent substantially all light in one of the sintered ceramic elements from reaching an adjacent sintered ceramic element. The step of filling the gaps may be carried out by forming a slurry containing the second material in powder form and immersing the green ceramic elements in the slurry. The process of cosintering the green ceramic elements with the reflector composition provides improved dimensional control during sintering and reduces processing costs.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: March 26, 2002
    Assignee: General Electric Company
    Inventors: Venkat Subramaniam Venkataramani, Charles David Greskovich, Steven Jude Duclos, James Anthony Brewer
  • Patent number: 6358441
    Abstract: A transparent scintillator material for rapid conversion of exciting radiation, such as x-rays, to scintillating radiation. The scintillator material has a cubic garnet host, and has praseodymium as an activator. The scintillator material may be a polycrystalline ceramic material. The polycrystalline ceramic is formed by sintering a powder formed by precipitation. The scintillator material may be integrated into computed tomography (CT) equipment or other x-ray imaging equipment. The scintillator material may also be integrated into a fast response x-ray detector system.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: March 19, 2002
    Assignee: General Electric Company
    Inventors: Steven Jude Duclos, Alok Mani Srivastava
  • Publication number: 20010028700
    Abstract: A transparent scintillator material for rapid conversion of exciting radiation, such as x-rays, to scintillating radiation. The scintillator material has a cubic garnet host, and has praseodymium as an activator. The scintillator material may be a polycrystalline ceramic material. The polycrystalline ceramic is formed by sintering a powder formed by precipitation. The scintillator material may be integrated into computed tomography (CT) equipment or other x-ray imaging equipment. The scintillator material may also be integrated into a fast response x-ray detector system.
    Type: Application
    Filed: April 6, 2001
    Publication date: October 11, 2001
    Inventors: Steven Jude Duclos, Alok Mani Srivastava
  • Patent number: 6299338
    Abstract: An exemplary lighting apparatus comprises a light source such as an LED, a transmissive body optically coupled to the light source, and at least one region of luminescent material formed on a portion of the transmissive body, the at least one region of luminescent material forming an ornamental design on the transmissive body, wherein the at least one region of luminescent material absorbs light having a first spectrum transmitted through the transmissive body and emits light having a second spectrum outside of the transmissive body. The lighting apparatus can be used in a decorative manner, such as for holiday lighting or as a display. The lighting apparatus can be used to display a variety of patterns and shapes and can operate safely at low power over a long lifetime.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: October 9, 2001
    Assignee: General Electric Company
    Inventors: Lionel Monty Levinson, Alok Mani Srivastava, Steven Jude Duclos, Anil Raj Duggal