Patents by Inventor Steven M. Landin

Steven M. Landin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7915196
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: March 29, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Publication number: 20090209412
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Application
    Filed: October 7, 2005
    Publication date: August 20, 2009
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Publication number: 20040092380
    Abstract: A method for making an aluminum oxide (Al2O3) component utilizes an amount of aluminum oxide in particle form. The aluminum oxide initially has less than about 100 parts per million of sodium and less than about 600 parts per million of silica. The aluminum oxide is ground with media that comprise aluminum oxide ceramic pieces that have less than about 200 parts per million of sodium to deagglomerate and reduce the particle size of the aluminum oxide. The ground aluminum oxide is placed into a slurry, and a low sodium grade binder is added to the slurry. The slurry is dried to provide an aluminum oxide powder having a sodium content that is less than about 200 parts per million. The powder may then be formed into a certain shape and thermally treated to produce an aluminum oxide component having a low sodium and low silica content.
    Type: Application
    Filed: July 1, 2003
    Publication date: May 13, 2004
    Applicant: CoorsTek, Inc.
    Inventors: Frank Anderson, Steven M. Landin
  • Patent number: 6410160
    Abstract: Porous metal-containing materials are provided for a variety of uses including filters, electrodes for batteries and fuel cells, light weight structural materials, heat exchangers and catalysts. A method is provided for making the porous metal-containing materials involving vapor phase sintering of a metal oxide green form followed by reduction to form a porous metal-containing material, typically without any significant shrinkage of the sample occurring during processing. The porous metal-containing materials may have porosities of from about 40 percent to as high as 90% in some embodiments. Furthermore, the pore volume is highly interconnected, which is particularly advantageous for many applications.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: June 25, 2002
    Assignee: Colorado School of Mines
    Inventors: Steven M. Landin, Dennis W. Readey, Darin J. Aldrich
  • Publication number: 20020074282
    Abstract: Micro/ultra filtering elements are provided. The filtering elements comprise a support having one or more levels and a porous filtering membrane layer formed thereon comprising sintered ceramic and/or metallic particles of uniform diameters. The membrane may also contain ceramic particles which are disposed in the pores of the membrane. The filtering membrane preferably has an average pore size of from about 0.005 to about 10 micrometers. The filter element is capable of being formed in a variety of geometrical shapes based on the shape of the porous support.
    Type: Application
    Filed: October 25, 2001
    Publication date: June 20, 2002
    Inventors: Robert C. Herrmann, Steven M. Landin
  • Publication number: 20020031642
    Abstract: The present invention relates to a process for producing filled vias which are made of two components, a first component which forms a bonding layer between the wall of the via and a second component which forms the core of the via. Preferably, the two components solidify from a melt which includes two immiscible liquids. The first liquid is capable of wetting the wall of the via and the second liquid. The resulting product is also disclosed. Preferably the first component comprises a copper oxide and the second component comprises a conductive metal such as silver or copper.
    Type: Application
    Filed: April 6, 2001
    Publication date: March 14, 2002
    Applicant: CoorsTek, Inc.
    Inventors: Marcus A. Ritland, Steven M. Landin
  • Patent number: 6309546
    Abstract: A micro/ultrafiltering element (10) and method for making a filter element are provided. The filtering element comprises a multi-level support (26) having a filtering membrane layer (12) formed thereon comprising sintered particles (14) of uniform diameter. The filtering membrane preferably has an average pore size of from about 0.005-10 micrometers.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: October 30, 2001
    Assignee: Ellipsis Corporation
    Inventors: Robert C. Herrmann, Steven M. Landin
  • Patent number: 6270601
    Abstract: The present invention relates to a process for producing filled vias which are made of two components, a first component which forms a bonding layer between the wall of the via and a second component which forms the core of the via. Preferably, the two components solidify from a melt which includes two immiscible liquids. The first liquid is capable of wetting the wall of the via and the second liquid. The resulting product is also disclosed. Preferably the first component comprises a copper oxide and the second component comprises a conductive metal such as silver or copper.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: August 7, 2001
    Assignee: CoorsTek, Inc.
    Inventors: Marcus A. Ritland, Steven M. Landin