Patents by Inventor Steven P. Bennett

Steven P. Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125719
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosample may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 18, 2024
    Applicant: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Publication number: 20230358009
    Abstract: According to the present disclosure, methods and techniques for generating preferred concrete block products are provided. The methods and techniques involve providing addition of color to selected section within the blocks, as described herein, to generate enhancement effects. Typical applications involve spray applications for color pigment to visually distinct sections of the block on one or more decorative surfaces.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 9, 2023
    Inventors: Christopher W. BECKER, Glenn C. BOLLES, Jay J. JOHNSON, Jonathan M. SCHLUETER, Robert B. BURNQUIST, Steven P. BENNETT
  • Publication number: 20230329124
    Abstract: A single layer of metamagnetic material with exchange bias comprising a single layer of FeRh, wherein the single layer of FeRh comprises ion irradiation, wherein the single layer of FeRh comprising ion irradiation is an exchange bias surface layer, and wherein the single layer of FeRh comprises an interface between a ferromagnetic (FM) region and an antiferromagnetic (AFM) region. A method to create a FM/AFM junction in a single layer of FeRh, comprising the steps of providing a layer of FeRh film, wherein the layer of FeRh film is an antiferromagnetic (AFM) film, implanting ions into the top portion of the FeRh film, creating via the step of implanting ions a ferromagnetic (FM) region in the top region, maintaining the antiferromagnetic (AFM) region of the bottom portion, and creating a FM/AFM junction in the single layer of FeRh.
    Type: Application
    Filed: April 1, 2023
    Publication date: October 12, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Cory D. Cress, Olaf M.J. van ‘t Erve, Steven P. Bennett
  • Patent number: 11692323
    Abstract: According to the present disclosure, methods and techniques for generating preferred concrete block products are provided. The methods and techniques involve providing addition of color to selected section within the blocks (1), as described herein, to generate enhancement effects. Typical applications involve spray applications for color pigment to visually distinct sections of the block (1) on one or more decorative surfaces.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 4, 2023
    Assignee: Anchor Wall Systems, Inc.
    Inventors: Christopher W. Becker, Glenn C. Bolles, Jay J. Johnson, Jonathan M. Schlueter, Robert B. Burnquist, Steven P. Bennett
  • Patent number: 11605410
    Abstract: A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising an electronic memory logic element with four stable resistance states. A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising a layer of a metamagnetic material, a layer of a nonmagnetic material on the layer of a metamagnetic material, and a layer of a ferromagnetic material on the layer of a nonmagnetic material. A method of making a metamagnetic tunneling-based spin valve device for multistate magnetic memory.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: March 14, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M. J. van 't Erve, Steven P. Bennett, Adam L. Friedman
  • Publication number: 20210327486
    Abstract: A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising an electronic memory logic element with four stable resistance states. A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising a layer of a metamagnetic material, a layer of a nonmagnetic material on the layer of a metamagnetic material, and a layer of a ferromagnetic material on the layer of a nonmagnetic material. A method of making a metamagnetic tunneling-based spin valve device for multistate magnetic memory.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M.J. van 't Erve, Steven P. Bennett, Adam L. Friedman
  • Patent number: 11074950
    Abstract: A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising an electronic memory logic element with four stable resistance states. A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising a layer of a metamagnetic material, a layer of a nonmagnetic material on the layer of a metamagnetic material, and a layer of a ferromagnetic material on the layer of a nonmagnetic material. A method of making a metamagnetic tunneling-based spin valve device for multistate magnetic memory.
    Type: Grant
    Filed: April 13, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M. J. van 't Erve, Steven P. Bennett, Adam L. Friedman
  • Publication number: 20210149001
    Abstract: A high-sensitivity and ultra-low power consumption magnetic sensor using a magnetoelectric (ME) composite comprising of magnetostrictive and piezoelectric layers. This sensor exploits the magnetically driven resonance shift of a free-standing magnetoelectric micro-beam resonator. Also disclosed is the related method for making the magnetic sensor.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 20, 2021
    Inventors: Peter Finkel, Steven P. Bennett, Margo Staruch, Konrad Bussmann, Jeffrey W. Baldwin, Bernard R. Matis, Ronald Lacomb, William Zappone, Julie Lacomb, Meredith Metzler, Norman Gottron
  • Patent number: 10877110
    Abstract: A high-sensitivity and ultra-low power consumption magnetic sensor using a magnetoelectric (ME) composite comprising of magnetostrictive and piezoelectric layers. This sensor exploits the magnetically driven resonance shift of a free-standing magnetoelectric micro-beam resonator. Also disclosed is the related method for making the magnetic sensor.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: December 29, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Peter Finkel, Steven P. Bennett, Margo Staruch, Konrad Bussmann, Jeffrey W. Baldwin, Bernard R. Matis, Ronald Lacomb, William Zappone, Julie Lacomb, Meredith Metzler, Norman Gottron
  • Publication number: 20200395156
    Abstract: Also disclosed herein is an article having a substrate and a layer of an FeRh alloy disposed on the substrate. The alloy has a continuous antiferromagnetic phase and one or more discrete phases smaller in area than the continuous phase having a lower metamagnetic transition temperature than the continuous phase. Also disclosed herein is a method of: providing an article having a substrate and a layer having a continuous phase of an antiferromagnetic FeRh alloy disposed on the substrate and directing an ion source at one or more portions of the alloy to create one or more discrete phases having a lower metamagnetic transition temperature than the continuous phase.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 17, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Steven P. Bennett, Cory D. Cress, Joseph Prestigiacomo, Olaf M. J. van 't Erve
  • Publication number: 20200217036
    Abstract: According to the present disclosure, methods and techniques for generating preferred concrete block products are provided. The methods and techniques involve providing addition of color to selected section within the blocks (1), as described herein, to generate enhancement effects. Typical applications involve spray applications for color pigment to visually distinct sections of the block (1) on one or more decorative surfaces.
    Type: Application
    Filed: July 23, 2018
    Publication date: July 9, 2020
    Inventors: Christopher W. BECKER, Glenn C. BOLLES, Jay J. JOHNSON, Jonathan M. SCHLUETER, Robert B. BURNQUIST, Steven P. BENNETT
  • Publication number: 20190333559
    Abstract: A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising an electronic memory logic element with four stable resistance states. A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising a layer of a metamagnetic material, a layer of a nonmagnetic material on the layer of a metamagnetic material, and a layer of a ferromagnetic material on the layer of a nonmagnetic material. A method of making a metamagnetic tunneling-based spin valve device for multistate magnetic memory.
    Type: Application
    Filed: April 13, 2019
    Publication date: October 31, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M.J. van 't Erve, Steven P. Bennett, Adam L. Friedman
  • Publication number: 20180259599
    Abstract: A high-sensitivity and ultra-low power consumption magnetic sensor using a magnetoelectric (ME) composite comprising of magnetostrictive and piezoelectric layers. This sensor exploits the magnetically driven resonance shift of a free-standing magnetoelectric micro-beam resonator. Also disclosed is the related method for making the magnetic sensor.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 13, 2018
    Inventors: Peter Finkel, Steven P. Bennett, Margo Staruch, Konrad Bussmann, Jeffrey W. Baldwin, Bernard R. Matis, Ronald Lacomb, William Zappone, Julie Lacomb, Meredith Metzler, Norman Gottron