Patents by Inventor Steven R. Falta

Steven R. Falta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11650010
    Abstract: The present invention relates to an adsorption process for xenon recovery from a cryogenic liquid or gas stream wherein a bed of adsorbent is contacted with a xenon-containing liquid or gas stream selectively adsorbing the xenon from said stream. The adsorption bed is operated to at least near full breakthrough with xenon to enable a deep rejection of other stream components, prior to regeneration using the temperature swing method. After the stripping step, the xenon adsorbent bed is drained to clear out the liquid residue left in the nonselective void space and the xenon molecules in those void spaces is recycled upstream to the ASU distillation column for increasing xenon recovery. The xenon adsorbent bed is optionally purged with oxygen, followed by purging with gaseous argon at cryogenic temperature (?160 K) to displace the oxygen co-adsorbed on the AgX adsorbent due to higher selectivity of argon over oxygen on the AgX adsorbent.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 16, 2023
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Hai Du, Michael J. Dray, James P. Meagher, Steven R. Falta
  • Publication number: 20200378681
    Abstract: The present invention relates to an adsorption process for xenon recovery from a cryogenic liquid or gas stream wherein a bed of adsorbent is contacted with a xenon-containing liquid or gas stream selectively adsorbing the xenon from said stream. The adsorption bed is operated to at least near full breakthrough with xenon to enable a deep rejection of other stream components, prior to regeneration using the temperature swing method. After the stripping step, the xenon adsorbent bed is drained to clear out the liquid residue left in the nonselective void space and the xenon molecules in those void spaces is recycled upstream to the ASU distillation column for increasing xenon recovery. The xenon adsorbent bed is optionally purged with oxygen, followed by purging with gaseous argon at cryogenic temperature (?160 K) to displace the oxygen co-adsorbed on the AgX adsorbent due to higher selectivity of argon over oxygen on the AgX adsorbent.
    Type: Application
    Filed: December 12, 2018
    Publication date: December 3, 2020
    Inventors: Hai DU, Michael J. DRAY, James P. MEAGHER, Steven R. FALTA
  • Patent number: 10247471
    Abstract: An argon reflux condensation system and method in which a plurality of once-through condensers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the air separation plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Prior to flowing into the once-through condensers, the partially vaporized crude oxygen stream enters a phase separator which separates the crude oxygen vapor from the crude liquid oxygen.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 2, 2019
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: James R. Handley, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy, Maulik R. Shelat, Steven R. Falta
  • Patent number: 10190819
    Abstract: An argon reflux condensation system and method in which a plurality of once-through heat exchangers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Feed stream flow rate to the argon column is controlled in response to air flow rate to the plant and product flow rate is controlled in response to the feed stream flow rate to the argon column.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: January 29, 2019
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Steven R. Falta, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy, Maulik R. Shelat
  • Publication number: 20180328655
    Abstract: An argon reflux condensation system and method in which a plurality of once-through condensers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the air separation plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Prior to flowing into the once-through condensers, the partially vaporized crude oxygen stream enters a phase separator which separates the crude oxygen vapor from the crude liquid oxygen.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 15, 2018
    Inventors: James R. Handley, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy, Maulik R. Shelat, Steven R. Falta
  • Publication number: 20180320962
    Abstract: An argon reflux condensation system and method in which a plurality of once-through heat exchangers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Feed stream flow rate to the argon column is controlled in response to air flow rate to the plant and product flow rate is controlled in response to the feed stream flow rate to the argon column.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 8, 2018
    Inventors: Steven R. Falta, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy, Maulik R. Shelat
  • Patent number: 10082333
    Abstract: An argon reflux condensation system and method in which a plurality of once-through condensers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the air separation plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Prior to flowing into the once-through condensers, the partially vaporized crude oxygen stream enters a phase separator which separates the crude oxygen vapor from the crude liquid oxygen.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 25, 2018
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: James R. Handley, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy, Maulik R. Shelat, Steven R. Falta
  • Patent number: 10060673
    Abstract: An argon reflux condensation system and method in which a plurality of once-through heat exchangers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Feed stream flow rate to the argon column is controlled in response to air flow rate to the plant and product flow rate is controlled in response to the feed stream flow rate to the argon column.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 28, 2018
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Steven R. Falta, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy
  • Patent number: 9676629
    Abstract: The present invention generally relates to a method to enhance heat transfer in the temperature swing adsorption process (TSA) and to an intensified TSA process for gas/liquid purification or bulk separation. Helium is designed as the heat carrier media to directly bring heat/cool to the adsorbent bed during the TSA cycling process. With helium's superior heat conductivity, the time consuming regeneration steps (warming, regeneration and precooling) of TSA process can be significantly reduced and allowing for the TSA process to be intensified.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 13, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Hai Du, Scot E. Jaynes, Steven R. Falta, Neil A. Stephenson
  • Patent number: 9564648
    Abstract: A system and method for quantifying an anode leak location in a fuel cell system. The system and method include determining there is a leak in an anode sub-system of a fuel cell stack and estimating a first effective leak area using a first leak flow value and first operating parameters. The system and method also include increasing airflow to a cathode side of the fuel cell stack and estimating a second leak effective area using a second leak flow value and second operating parameters. The system and method further include comparing the first leak effective area to the second leak effective area and determining an anode outflow leak location based on the comparison between the first and second leak effective areas.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 7, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel C. Di Fiore, Manish Sinha, Steven R. Falta, Matthew A. Lang
  • Publication number: 20160362298
    Abstract: The present invention generally relates to a method to enhance heat transfer in the temperature swing adsorption process (TSA) and to an intensified TSA process for gas/liquid purification or bulk separation. Helium is designed as the heat carrier media to directly bring heat/cool to the adsorbent bed during the TSA cycling process. With helium's superior heat conductivity, the time consuming regeneration steps (warming, regeneration and precooling) of TSA process can be significantly reduced and allowing for the TSA process to be intensified.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Hai Du, Scot E. Jaynes, Steven R. Falta, Neil A. Stephenson
  • Publication number: 20160003539
    Abstract: An argon reflux condensation system and method in which a plurality of once-through condensers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the air separation plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Prior to flowing into the once-through condensers, the partially vaporized crude oxygen stream enters a phase separator which separates the crude oxygen vapor from the crude liquid oxygen.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 7, 2016
    Inventors: James R. Handley, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy, Maulik R. Shelat, Steven R. Falta
  • Publication number: 20160003538
    Abstract: An argon reflux condensation system and method in which a plurality of once-through heat exchangers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Feed stream flow rate to the argon column is controlled in response to air flow rate to the plant and product flow rate is controlled in response to the feed stream flow rate to the argon column.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 7, 2016
    Inventors: Steven R. Falta, Brian S. Powell, Henry E. Howard, Vijayaraghavan S. Chakravarthy
  • Patent number: 9105888
    Abstract: A combined water drain and diluent gas purge valve routes fluid from the anode side of a fuel cell to the cathode inlet. When a purge of diluent gas is requested, the valve opens, draining any liquid present in the sump of a water separation device, for example. After the liquid has drained, the diluent gas is purged. An anode bleed model using fuel injector feedback can determine the amount of gas exiting the valve, and can request the valve to close once the required amount of diluent is purged. During operation, an amount of hydrogen may exit the valve. Hydrogen passing through the valve can be catalytically consumed once it reaches the cathode electrode, causing the cathode exhaust, and the fuel cell exhaust to have a reduced hydrogen content.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: August 11, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven R. Falta, Matthew A. Lang, Daniel C. Di Fiore
  • Patent number: 9099702
    Abstract: A system and method for selectively operating a fuel cell stack in response to loss of a voltage signal from one or more fuel cells in the stack. If the voltage signal from the one or more fuel cells is lost, the method performs one or more remedial actions to cause the fuel cell stack to operate in a more stack safe condition. The method then determines whether the cell or cells whose voltage signal is lost was healthy, such as operating above a predetermined voltage threshold, prior to the voltage signal being lost. If the cell voltage signal was above the voltage threshold, then the fuel cell stack is operated normally under the remedial actions, and if the voltage signal is below the voltage threshold, then the fuel cell stack is operated in a power limitation mode.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: August 4, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Derek R. Lebzelter, Steven R. Falta
  • Patent number: 9080938
    Abstract: A system and method for detecting an anode pressure sensor failure in a fuel cell system. The system and method include a controller that sets an initial minimum anode pressure sensor value and an initial maximum anode pressure sensor value. The controller determines a desired time interval for sampling anode pressure measurements and determines a total number of samples of anode pressure measurements to be collected by the controller from an anode pressure sensor. The controller also compares a pressure difference between the initial or a measured minimum anode pressure and the initial or a measured maximum anode pressure to a predetermined pressure difference threshold and sets a pressure sensor fault if the pressure difference between the initial or measured minimum anode pressure and the initial or maximum anode pressure is less than the predetermined pressure difference threshold.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun Cai, Daniel C. Di Fiore, Steven R. Falta, Sergio E. Garcia, Carol A. Galskoy
  • Patent number: 9054351
    Abstract: A fuel cell system, including a plurality of bipolar plate assemblies, each assembly including a first plate and a second plate with an internal coolant flow path disposed therebetween, a flow path for a first reactant gas on a side of the first plate opposite the internal coolant flow path, and a flow path for a second reactant gas on a side of the second plate opposite the internal coolant flow path, and a cooling system configured to place coolant in thermal communication with the plurality of bipolar plate assemblies, wherein cycling pressure differentials between the internal coolant flow path and the external reactant gas flow paths cause expansion and contraction of a volume of coolant disposed within the bipolar plate assembly, thereby pumping coolant through the cooling system. A method of cooling a fuel cell-powered vehicle is also provided.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 9, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew A. Lang, Steven R. Falta
  • Patent number: 9028989
    Abstract: A fuel cell system includes a water vapor transfer unit and a fluid flow distribution feature, the water vapor transfer unit including a first plate having a plurality of first flow channels for receiving a flow of a first fluid therein, and a second plate having a plurality of second flow channels for receiving a flow of a second fluid therein. The fluid flow distribution feature is configured to control at least one of a volume of flow of the first fluid through the first flow channels and a volume of flow of the second fluid through the second flow channels, wherein at least one of a flow distribution of the first fluid across the first plate and a flow distribution of the second fluid across the second plate is varied.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 12, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Yan Zhang, Steven R. Falta, Steven D. Burch, Glenn W. Skala
  • Patent number: 9018961
    Abstract: A system and method for determining whether an anode injector that injects hydrogen gas into an anode side of a fuel cell stack has failed. The method includes monitoring a voltage of the fuel cell stack and performing spectral analysis of the stack voltage to identify amplitude peaks in the stack voltage. The method further includes determining whether the spectral analysis of the stack voltage has identified an amplitude peak at a location where an amplitude peak should occur if the injector is operating properly. If no amplitude peak is identified at that location, then the method determines that the injector is not operating properly. If an amplitude peak is identified at that location, then the method compares the amplitude peak to the desired amplitude peak to identify if it is within a threshold to determine if the injector is operating properly.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Manish Sinha, Daniel C. Di Fiore, John C. Fagley, Steven R. Falta
  • Publication number: 20140335432
    Abstract: Apparatus, methods, and systems for estimating hydrogen concentration and/or pressure in an anode compartment of a fuel cell stack in a fuel cell vehicle. In some implementations, the estimates are based on a correlation between a transient dip in voltage in response to an anode to cathode bleed event and a concentration of hydrogen in the anode compartment of a fuel cell stack. Some implementations may comprise initiating a bleed event, sensing a transient dip in voltage in response to the bleed event, and using the correlation to calculate an estimate of a concentration and/or pressure of the gas in the anode compartment. The sensitivity of the correlation and hence the accuracy of estimation may change with the power level and may be accounted for in the correlation.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: MANISH SINHA, MATTHEW A. LANG, DANIEL C. DI FIORE, STEVEN R. FALTA