Patents by Inventor Steven R. Kramer

Steven R. Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926929
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 12, 2024
    Assignee: BIOLOGIQ, INC
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 11926940
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 12, 2024
    Assignee: BIOLOGIQ, INC.
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 4543319
    Abstract: A method is provided for providing a polystyrene-tetrathiafulvalene (PSTTF)/deep-ultraviolet hydrid system which combines the advantages of E-beam or X-ray lithography systems with those of deep-UV conformable printing to produce low bias, high aspect ratio resist images over the topography of microelectronic devices.
    Type: Grant
    Filed: January 15, 1985
    Date of Patent: September 24, 1985
    Assignee: International Business Machines Corporation
    Inventors: Vivian W. Chao, Frank B. Kaufman, Steven R. Kramer, Burn J. Lin
  • Patent number: 4360583
    Abstract: The invention relates to high resolution video storage disks comprising a substrate having disposed thereon a film of a monofunctionalized substituted tetraheterofulvalene compound and a halocarbon. The tetraheterofulvalene compound can have the molecular formula ##STR1## where X can be S and/or Se R can be an alkyl group having from about 1 to about 8 carbon atoms or a benzyl group wherein said benzyl group can be a part of a polymer chain;and Y can be either an ester or an ether.
    Type: Grant
    Filed: December 15, 1980
    Date of Patent: November 23, 1982
    Assignee: International Business Machines Corporation
    Inventors: Edward M. Engler, Frank B. Kaufman, Steven R. Kramer, Bruce A. Scott