Patents by Inventor Steven Robert Snyder

Steven Robert Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7046104
    Abstract: A variable true time delay line (100) includes an RF transmission line (110) and at least one fluidic delay unit (108). The fluidic delay unit includes a fluidic dielectric contained in a cavity (109) and coupled to the RF transmission line (110) along at least a portion of a length thereof. At least one pump is provided for adding and removing the fluid dielectric to the cavity (109) in response to a time delay control signal. A propagation delay of the RF transmission line is selectively varied by adding and removing the fluid dielectric from the cavity.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: May 16, 2006
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Stephen B. Brown, James J. Rawnick
  • Patent number: 6952148
    Abstract: A continuously variable true time delay line (100) and method for producing a time delay. The true delay line (100) includes an RF transmission line (110) and at least a first fluidic dielectric (130) contained in a cavity (109) coupled to the RF transmission line along at least a first length thereof. One or more variable displacement fluid processors (120) are provided for changing a distribution of the fluid dielectric (130) in the cavity (109) in response to a time delay control signal (137). The propagation delay of the line is selectively varied by changing the distribution of the fluid dielectric in the cavity.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: October 4, 2005
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Stephen B. Brown, James J. Rawnick
  • Patent number: 6930568
    Abstract: Method and apparatus for producing a variable delay for an RF signal. The method can include the step of propagating the RF signal along an RF transmission line, coupling a fluidic dielectric to the RF transmission line, and dynamically changing a composition of the fluidic dielectric to selectively vary its permittivity in response to a time delay control signal. The method can also include the step of dynamically changing a composition of the fluidic dielectric to vary its permeability. The permittivity and the permeability can be varied concurrently in response to the time delay control signal. In a preferred embodiment the method can include selectively varying the permeability concurrently with the permittivity to maintain a characteristic impedance of the transmission line approximately constant.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: August 16, 2005
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Stephen B. Brown, Raymond C. Rumpf, Brett Pigon, James J. Rawnick
  • Publication number: 20040178865
    Abstract: A continuously variable true time delay line (100) and method for producing a time delay. The true delay line (100) includes an RF transmission line (110) and at least a first fluidic dielectric (130) contained in a cavity (109) coupled to the RF transmission line along at least a first length thereof. One or more variable displacement fluid processors (120) are provided for changing a distribution of the fluid dielectric (130) in the cavity (109) in response to a time delay control signal (137). The propagation delay of the line is selectively varied by changing the distribution of the fluid dielectric in the cavity.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Inventors: Steven Robert Snyder, Stephen B. Brown, James J. Rawnick
  • Publication number: 20040155727
    Abstract: A variable true time delay line (100) includes an RF transmission line (110) and at least one fluidic delay unit (108). The fluidic delay unit includes a fluidic dielectric contained in a cavity (109) and coupled to the RF transmission line (110) along at least a portion of a length thereof. At least one pump is provided for adding and removing the fluid dielectric to the cavity (109) in response to a time delay control signal. A propagation delay of the RF transmission line is selectively varied by adding and removing the fluid dielectric from the cavity.
    Type: Application
    Filed: February 10, 2003
    Publication date: August 12, 2004
    Inventors: Steven Robert Snyder, Stephen B. Brown, James J. Rawnick
  • Publication number: 20040095208
    Abstract: Method and apparatus for producing a variable delay for an RF signal. The method can include the step of propagating the RF signal along an RF transmission line, coupling a fluidic dielectric to the RF transmission line, and dynamically changing a composition of the fluidic dielectric to selectively vary its permittivity in response to a time delay control signal. The method can also include the step of dynamically changing a composition of the fluidic dielectric to vary its permeability. The permittivity and the permeability can be varied concurrently in response to the time delay control signal. In a preferred embodiment the method can include selectively varying the permeability concurrently with the permittivity to maintain a characteristic impedance of the transmission line approximately constant.
    Type: Application
    Filed: November 19, 2002
    Publication date: May 20, 2004
    Inventors: Steven Robert Snyder, Stephen B. Brown, Raymond C. Rumpf, Brett Pigon, James J. Rawnick
  • Patent number: 6483705
    Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a heat sink adjacent the cooling substrate. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber. Furthermore, an evaporator thermal transfer body may be connected in thermal communication between the evaporator chamber and the electronic device. Additionally, at least one condenser thermal transfer body may be connected in thermal communication between the at least one condenser chamber and the heat sink. The evaporator thermal transfer body and the at least one condenser thermal transfer body preferably each have a higher thermal conductivity than adjacent cooling substrate portions.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 19, 2002
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
  • Publication number: 20020131237
    Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a heat sink adjacent the cooling substrate. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber. Furthermore, an evaporator thermal transfer body may be connected in thermal communication between the evaporator chamber and the electronic device. Additionally, at least one condenser thermal transfer body may be connected in thermal communication between the at least one condenser chamber and the heat sink. The evaporator thermal transfer body and the at least one condenser thermal transfer body preferably each have a higher thermal conductivity than adjacent cooling substrate portions.
    Type: Application
    Filed: March 19, 2001
    Publication date: September 19, 2002
    Applicant: Harris Corporation
    Inventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange
  • Patent number: 6418019
    Abstract: An electronic module includes a cooling substrate, an electronic device mounted thereon, and a plurality of cooling fluid dissociation electrodes carried by the cooling substrate for dissociating cooling fluid to control a pressure thereof. More particularly, the cooling substrate may have an evaporator chamber adjacent the electronic device, at least one condenser chamber adjacent the heat sink, and at least one cooling fluid passageway connecting the evaporator chamber in fluid communication with the at least one condenser chamber.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: July 9, 2002
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Charles Michael Newton, Michael Ray Lange