Patents by Inventor Steven Roy Burdette

Steven Roy Burdette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8312740
    Abstract: Disclosed are synthetic silica glass body with a birefringence pattern having low fast axis direction randomness factor and glass reflow process. The glass reflow process comprises steps of: providing a glass tube having a notch; and thermally reflowing the glass tube to form a glass plate. The process can be advantageously used to produce fused silica glass plate without observable striae when viewed in the direction of optical axis. Also disclosed are optical members comprising the fused silica glass body and a process for reflowing glass cylinders.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 20, 2012
    Assignee: Corning Incorporated
    Inventors: Steven Roy Burdette, Polly Wanda Chu, James Gerard Fagan, Thomas William Hobbs, Sumalee Likitvanichkul, Daniel Raymond Sempolinski, Terry Lee Taft, Michael John Walters
  • Publication number: 20120240625
    Abstract: Methods for controlling thickness variations across the width of a glass ribbon (104) are provided. The methods employ a set of thermal elements (106) for locally controlling the temperature of the ribbon (104). The operating values for the thermal elements (106) are selected using an iterative procedure in which thickness variations measured during a given iteration are employed in a mathematical procedure which selects the operating values for the next iteration. In practice, the method can bring thickness variations of glass sheets within commercial specifications in just a few iterations, e.g., 2-4 iterations.
    Type: Application
    Filed: June 6, 2012
    Publication date: September 27, 2012
    Applicant: CORNING INCORPORATED
    Inventors: Steven Roy Burdette, Vladislav Y. Golyatin, Gautam Meda, Randy Lee Rhoads
  • Patent number: 8269131
    Abstract: A flange (13) for use in direct resistance heating of a glass-carrying vessel (10), such as a finer, is provided. The flange comprises a plurality of electrically-conductive rings which include an innermost ring (140) which is joined to the vessel's exterior wall (12) during use of the flange and an outermost ring (150) which receives electrical current during use of the flange. The innermost ring (140) comprises a high-temperature metal which comprises at least 80% platinum and the outermost ring (150) comprises at least 99.0% nickel. This combination of materials both increases the reliability of the flange and reduces its cost. In certain embodiments, the flange can also include one or more rings (190) composed of a platinum-nickel alloy which has a lower thermal conductivity than platinum or nickel and thus can serve to reduce heat loss through the flange.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: September 18, 2012
    Assignee: Corning Incorporated
    Inventors: Lee Martin Adelsberg, Steven Roy Burdette, Joyce C Gillis Dunbar, James Patrick Murphy
  • Patent number: 8196431
    Abstract: Methods for controlling thickness variations across the width of a glass ribbon (104) are provided. The methods employ a set of thermal elements (106) for locally controlling the temperature of the ribbon (104). The operating values for the thermal elements (106) are selected using an iterative procedure in which thickness variations measured during a given iteration are employed in a mathematical procedure which selects the operating values for the next iteration. In practice, the method can bring thickness variations of glass sheets within commercial specifications in just a few iterations, e.g., 2-4 iterations.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: June 12, 2012
    Assignee: Corning Incorporated
    Inventors: Steven Roy Burdette, Vladislav Y Golyatin, Gautam Meda, Randy Lee Rhoads
  • Patent number: 8110277
    Abstract: A method of making a fused silica plate includes providing a fused silica blank having a length, a longitudinal axis, and an outer diameter. The method further includes forming a slot in the fused silica blank which extends from the outer diameter to a location at or offset from a center of the fused silica blank and is substantially parallel to the longitudinal axis of the fused silica blank. The slot is defined by a concave surface located at or offset from the center of the fused silica blank, a first side surface extending between a first edge of the concave surface and the outer diameter of the fused silica blank, and a second side surface extending between a second edge of the concave surface and the outer diameter of the fused silica blank. At least one of the first and second side surfaces are connected to the concave surface by a chamfered surface. The method further includes rolling out the fused silica blank having the slot to form a fused silica plate.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 7, 2012
    Assignee: Corning Incorporated
    Inventors: Steven Roy Burdette, James Gerard Fagan, Daniel Raymond Sempolinski, Pattarin McLaren
  • Publication number: 20110302965
    Abstract: Methods and apparatus for controlling the stress in, and the shape of, the glass ribbon (15) formed in a downdraw glass manufacturing process (e.g., the fusion downdraw process) are provided. In certain embodiments, the control is achieved by cooling the bead portions (21a, 21b) of the ribbon (15) at a rate which provides a heat flux Q?b at the thickest part of the bead (23a, 23b) which is given by Q?b=Q?q+?Q?, where (i) Q?q is the heat flux at a transverse position adjacent to the bead portion (21a, 21b) at which the ribbon's thickness equals 1.05*tcenter, where tcenter is the final thickness at the ribbon's center line (17), and (ii) ?Q??(tb/tq?1)Q?q+10 kilowatts/meter2, where tb is the thickness of the thickest part of the bead portion. The cooling can take place along the entire length of the ribbon (15) or at selected locations, e.g.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Inventors: Kenneth William Aniolek, Steven Roy Burdette, Liam Ruan de Paor, Eunyoung Park
  • Patent number: 8037716
    Abstract: Methods and apparatus for controlling the stress in, and the shape of, the glass ribbon (15) formed in a downdraw glass manufacturing process (e.g., the fusion downdraw process) are provided. In certain embodiments, the control is achieved by cooling the bead portions (21a, 21b) of the ribbon (15) at a rate which provides a heat flux Q?b at the thickest part of the bead (23a, 23b) which is given by Q?b=Q?q+?Q?, where (i) Q?q is the heat flux at a transverse position adjacent to the bead portion (21a, 21b) at which the ribbon's thickness equals 1.05*tcenter, where tcenter is the final thickness at the ribbon's center line (17), and (ii) ?Q??(tb/tq?1)Q?q+10 kilowatts/meter2, where tb is the thickness of the thickest part of the bead portion. The cooling can take place along the entire length of the ribbon (15) or at selected locations, e.g.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 18, 2011
    Assignee: Corning Incorporated
    Inventors: Kenneth William Aniolek, Steven Roy Burdette, Liam Ruan de Paor, Eunyoung Park
  • Publication number: 20100293998
    Abstract: Methods for controlling thickness variations across the width of a glass ribbon (104) are provided. The methods employ a set of thermal elements (106) for locally controlling the temperature of the ribbon (104). The operating values for the thermal elements (106) are selected using an iterative procedure in which thickness variations measured during a given iteration are employed in a mathematical procedure which selects the operating values for the next iteration. In practice, the method can bring thickness variations of glass sheets within commercial specifications in just a few iterations, e.g., 2-4 iterations.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Inventors: Steven Roy Burdette, Vladislav Y. Golyatin, Gautam Meda, Randy Lee Rhoads
  • Patent number: 7818980
    Abstract: Systems, methods, apparatus and products relate to display glass from curved glass ribbons, to improve shape stability in glass ribbons, to creation of reduced stress glass ribbons, and to creation of improved shape stability and reduced stress of display glass, which may include forming slightly a curved glass ribbon in a fusion draw machine (FDM). One or more embodiments may include an isopipe having a desired curvature; an isopipe having a desired incline; an offset draw device operable to draw the glass ribbon in an inclined ribbon draw direction; one or more air jets or vacuum operable to apply air pressure to a first side of the glass ribbon, thereby creating a pressure differential on the first side; and/or one or more electrostatic force generators operable to apply electrostatic force to a first side of the glass ribbon, thereby generating an electric field differential across the glass ribbon.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 26, 2010
    Assignee: Corning Incorporated
    Inventors: Steven Roy Burdette, Longting He, Lewis Kirk Klingensmith, Liming Wang
  • Publication number: 20100218557
    Abstract: Methods and apparatus for controlling the stress in, and the shape of, the glass ribbon (15) formed in a downdraw glass manufacturing process (e.g., the fusion downdraw process) are provided. In certain embodiments, the control is achieved by cooling the bead portions (21a, 21b) of the ribbon (15) at a rate which provides a heat flux Q?b at the thickest part of the bead (23a, 23b) which is given by Q?b=Q?q+?Q?, where (i) Q?q is the heat flux at a transverse position adjacent to the bead portion (21a, 21b) at which the ribbon's thickness equals 1.05*tcenter, where tcenter is the final thickness at the ribbon's center line (17), and (ii) ?Q??(tb/tq?1)Q?q+10 kilowatts/meter2, where tb is the thickness of the thickest part of the bead portion. The cooling can take place along the entire length of the ribbon (15) or at selected locations, e.g.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Inventors: Kenneth William Aniolek, Steven Roy Burdette, Liam Ruan de Paor, Eunyoung Park
  • Patent number: 7685841
    Abstract: In the formation of sheet glass by the overflow downdraw process, the width of usable sheet glass is maximized by downwardly flowing edge portions of the sheet over web-like members and thereafter over extensions which intersect with and are downwardly inclined relative to the web-like members to thin edge portions of the glass flow and maintain sheet width. The extension members are preferably removably attached to the web-like members, greatly facilitating replacement of the more easily damaged extension members.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 30, 2010
    Assignee: Corning Incorporated
    Inventors: Olus Naili Boratav, Steven Roy Burdette, David John Ulrich
  • Publication number: 20090217709
    Abstract: A flange (13) for use in direct resistance heating of a glass-carrying vessel (10), such as a finer, is provided. The flange comprises a plurality of electrically-conductive rings which include an innermost ring (140) which is joined to the vessel's exterior wall (12) during use of the flange and an outermost ring (150) which receives electrical current during use of the flange. The innermost ring (140) comprises a high-temperature metal which comprises at least 80% platinum and the outermost ring (150) comprises at least 99.0% nickel. This combination of materials both increases the reliability of the flange and reduces its cost. In certain embodiments, the flange can also include one or more rings (190) composed of a platinum-nickel alloy which has a lower thermal conductivity than platinum or nickel and thus can serve to reduce heat loss through the flange.
    Type: Application
    Filed: July 8, 2008
    Publication date: September 3, 2009
    Inventors: Lee Martin Adelsberg, Steven Roy Burdette, Joyce C. Gillis Dunbar, James Patrick Murphy
  • Publication number: 20090142547
    Abstract: A method of making a fused silica plate includes providing a fused silica blank having a length, a longitudinal axis, and an outer diameter. The method further includes forming a slot in the fused silica blank which extends from the outer diameter to a location at or offset from a center of the fused silica blank and is substantially parallel to the longitudinal axis of the fused silica blank. The slot is defined by a concave surface located at or offset from the center of the fused silica blank, a first side surface extending between a first edge of the concave surface and the outer diameter of the fused silica blank, and a second side surface extending between a second edge of the concave surface and the outer diameter of the fused silica blank. At least one of the first and second side surfaces are connected to the concave surface by a chamfered surface. The method further includes rolling out the fused silica blank having the slot to form a fused silica plate.
    Type: Application
    Filed: October 30, 2008
    Publication date: June 4, 2009
    Inventors: Steven Roy Burdette, James Gerard Fagan, Daniel Raymond Sempolinski, Pattarin McLaren
  • Publication number: 20090095022
    Abstract: Disclosed are synthetic silica glass body with a birefringence pattern having low fast axis direction randomness factor and glass reflow process. The glass reflow process comprises steps of: providing a glass tube having a notch; and thermally reflowing the glass tube to form a glass plate. The process can be advantageously used to produce fused silica glass plate without observable striae when viewed in the direction of optical axis. Also disclosed are optical members comprising the fused silica glass body and a process for reflowing glass cylinders.
    Type: Application
    Filed: November 21, 2008
    Publication date: April 16, 2009
    Inventors: Steven Roy Burdette, Polly Wanda Chu, James Gerard Fagan, Thomas William Hobbs, Sumalee Likitvanichkul, Daniel Raymond Sempolinski, Terry Lee Taft, Michael John Walters
  • Publication number: 20080264104
    Abstract: In the formation of sheet glass by the overflow downdraw process, the width of usable sheet glass is maximized by downwardly flowing edge portions of the sheet over web-like members and thereafter over extensions which intersect with and are downwardly inclined relative to the web-like members to thin edge portions of the glass flow and maintain sheet width. The extension members are preferably removably attached to the web-like members, greatly facilitating replacement of the more easily damaged extension members.
    Type: Application
    Filed: June 26, 2008
    Publication date: October 30, 2008
    Inventors: Olus Naili Boratav, Steven Roy Burdette, David John Ulrich
  • Patent number: 7409839
    Abstract: In the formation of sheet glass by the overflow downdraw process, the width of usable sheet glass is maximized by downwardly flowing edge portions of the sheet over web-like members and thereafter over extensions which intersect with and are downwardly inclined relative to the web-like members to thin edge portions of the glass flow and maintain sheet width. The extension members are preferably removably attached to the web-like members, greatly facilitating replacement of the more easily damaged extension members.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: August 12, 2008
    Assignee: Corning Incorporated
    Inventors: Olus Naili Boratav, Steven Roy Burdette, David John Ulrich
  • Publication number: 20080131651
    Abstract: Systems, methods, apparatus and products relate to display glass from curved glass ribbons, to improve shape stability in glass ribbons, to creation of reduced stress glass ribbons, and to creation of improved shape stability and reduced stress of display glass, which may include forming slightly a curved glass ribbon in a fusion draw machine (FDM). One or more embodiments may include an isopipe having a desired curvature; an isopipe having a desired incline; an offset draw device operable to draw the glass ribbon in an inclined ribbon draw direction; one or more air jets or vacuum operable to apply air pressure to a first side of the glass ribbon, thereby creating a pressure differential on the first side; and/or one or more electrostatic force generators operable to apply electrostatic force to a first side of the glass ribbon, thereby generating an electric field differential across the glass ribbon.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Steven Roy Burdette, Longting He, Lewis Kirk Klingensmith, Liming Wang