Patents by Inventor Steven Russell Freeman

Steven Russell Freeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846706
    Abstract: Systems and methods for processing an analog waveform before it is sampled by an analog-to-digital converter (ADC) for the purpose of multiline beamforming in an ultrasound system are provided. The multiline beamforming is enabled by delaying the same waveform by two different time delays and by re-combining the delayed waveforms. This approach leverages an architecture that can also be used for temporal filtering, in which a single acoustic signal can be read out of the ARAM twice, separated by time, taking advantage of the fact that the ARAM allows for non-destructive read operations.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: December 19, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Steven Russell Freeman
  • Publication number: 20220381890
    Abstract: Front-end circuitry for an ultrasound system comprises a beamformer FPGA integrated circuit, transmit ICs with both pulse transmitters and linear waveform transmitters and T/R switches, transmit control and receiver ICs, and analog-to-digital converter (ADC) ICs. Only the transmit ICs require high voltages, and the transmit/receive switches are integrated in the transmit ICs, isolating the receiver ICs from high voltages. The transmitters can be trimmed to adjust the pulse rise and fall rates, enabling the transmission of pulses with low harmonic frequency content and thus better harmonic images.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Steven Russell Freeman, Scott Owen Schweizer, Timothy Savord, Jason Thanh Nguyen, Manfred Uwe Bartz, Truong Nguyen
  • Patent number: 11480674
    Abstract: A digital transmit beamformer for an ultrasound system has a waveform sample memory which stores sequences of samples of different pulse transmit waveforms of differing pulse widths. The memory is shared by a plurality of transmit channels, each of which can access its own selected sample sequence, independent of the selections by other channels. Waveform sample readout by the channels occurs substantially simultaneously during a transmit event, producing a transmit beam from a transmit aperture with different pulse waveforms applied to different elements of the transmit aperture. Higher energy waveforms with wider pulse widths are applied to central elements of the aperture and lower energy waveforms with narrower pulse widths are applied to lateral elements of the aperture to produce an apodized transmit beam.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 25, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Changhong Hu, Steven Russell Freeman
  • Publication number: 20220313217
    Abstract: The present disclosure describes ultrasound systems and methods configured to interrogate the stiffness and/or elasticity of a target tissue via shear wave imaging Systems may be configured to stroboscopically transmit a plurality of push pulses into the target tissue at different focal depths. The quickly transmitted push pulses may generate shear waves that constructively interfere to form a composite shear wave. Example systems may include a beamformer configured to transmit push pulse parameters to a transducer array while receiving new push pulse parameters from a controller. Dual transmission and receipt of different push pulse parameters reconfigures the beamformer without interrupting push pulse transmission, thereby minimizing the delay between successive push pulses. Push pulses transmitted according to the disclosed methods may generate a composite shear wave configured to interrogate tissue with enhanced sensitivity across a broad depth.
    Type: Application
    Filed: May 14, 2020
    Publication date: October 6, 2022
    Inventor: Steven Russell Freeman
  • Patent number: 11442156
    Abstract: Front-end circuitry for an ultrasound system comprises a beamformer FPGA integrated circuit, transmit ICs with both pulse transmitters and linear waveform transmitters and T/R switches, transmit control and receiver ICs, and analog-to-digital converter (ADC) ICs. Only the transmit ICs require high voltages, and the transmit/receive switches are integrated in the transmit ICs, isolating the receiver ICs from high voltages. The transmitters can be trimmed to adjust the pulse rise and fall rates, enabling the transmission of pulses with low harmonic frequency content and thus better harmonic images.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 13, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steven Russell Freeman, Truong Huy Nguyen, Manfred Bartz, Jason Thanh Nguyen, Timothy Savord, Scott Owen Schweizer
  • Patent number: 11364014
    Abstract: Front-end circuitry for an ultrasound system is described which comprises a beamformer FPGA integrated circuit, transmit ICs with both pulse transmitters and linear waveform transmitters, transmit control and receiver ICs, and analog-to-digital converter (ADC) ICs. Waveform data for both the linear and pulser transmitters is stored in the transmit control and receiver ICs, saving pins on the FPGA, which is the conventional source of this data. The ADCs couple digital echo data to the FPGA for beamforming over serial bus lines, saving additional FPGA pins over a conventional parallel data arrangement. The inclusion of both pulser and linear waveform transmit capabilities in the transmit ICs enables the use of both types of transmitters in the formation of a multi-mode image, such as use of the pulsers for Doppler beams and linear transmitters for B mode beams in the formation of a colorflow image.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: June 21, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steven Russell Freeman, Truong Huy Nguyen, Manfred Bartz, Jason Thanh Nguyen, Timothy Savord, Scott Owen Schweizer
  • Publication number: 20220137211
    Abstract: Systems and methods for processing an analog waveform before it is sampled by an analog-to-digital converter (ADC) for the purpose of multiline beamforming in an ultrasound system are provided. The multiline beamforming is enabled by delaying the same waveform by two different time delays and by re-combining the delayed waveforms. This approach leverages an architecture that can also be used for temporal filtering, in which a single acoustic signal can be read out of the ARAM twice, separated by time, taking advantage of the fact that the ARAM allows for non-destructive read operations.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 5, 2022
    Inventor: Steven Russell Freeman
  • Patent number: 11249188
    Abstract: Systems and methods for filtering an analog waveform before it is sampled by an analog-to-digital converter (ADC) in an ultrasound system are provided. The waveform can be filtered by delaying the same waveform by two different time delays and combining the delayed waveforms to effectively cancel out the fundamental components, thereby providing more sensitive detection of harmonic components in received echo signals. This filtering approach leverages an architecture that can also be used for multiline beamforming to perform the temporal filtering, in which a single acoustic signal can be read out of the ARAM twice, separated by time, taking advantage of the fact that the ARAM allows for non-destructive read operations.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: February 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Steven Russell Freeman
  • Patent number: 11054509
    Abstract: Microbeamformers coupled to groups of array elements which partially beamform groups of elements for the formation of multiple receive lines are provided. In the microbeamformers, a delay line can be configured to output multiple signal streams that can be delayed by different amounts to support multiline receive in a microbeamformer. A read process during beamforming is not destructive, thereby allowing multiline receive beams to be generated from a single delay line.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: July 6, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steven Russell Freeman, Michael Thomas McMillan
  • Patent number: 10952706
    Abstract: An ultrasound microbeamformer for one or more transducer arrays includes a plurality of channels, each of which has two transmitters and a receiver which is selectively coupled to two or more transducer elements by T/R switches and dynamically switchable receive switches (RXSW). The transmitters enable different transducers to be actuated differently, such as transmitting a high frequency pulse or waveform with one transmitter and a low frequency pulse or waveform with the other transmitter. The transmitters may both be used during the same transmit-receive cycle to simultaneously transmit and receive both high and low frequency signals for the formation of a common image.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: March 23, 2021
    Assignee: Koninklijke Philips N.V.
    Inventor: Steven Russell Freeman
  • Publication number: 20200182989
    Abstract: Front-end circuitry for an ultrasound system comprises a beamformer FPGA integrated circuit, transmit ICs with both pulse transmitters and linear waveform transmitters and T/R switches, transmit control and receiver ICs, and analog-to-digital converter (ADC) ICs. Only the transmit ICs require high voltages, and the transmit/receive switches are integrated in the transmit ICs, isolating the receiver ICs from high voltages. The transmitters can be trimmed to adjust the pulse rise and fall rates, enabling the transmission of pulses with low harmonic frequency content and thus better harmonic images.
    Type: Application
    Filed: August 3, 2017
    Publication date: June 11, 2020
    Inventors: Steven Russell Freeman, Truong Huy Nguyen, Manfred Bartz, Jason Thanh Nguyen, Timothy Savord, Scott Owen Schweizer
  • Publication number: 20200025920
    Abstract: A digital transmit beamformer for an ultrasound system has a waveform sample memory which stores sequences of samples of different pulse transmit waveforms of differing pulse widths. The memory is shared by a plurality of transmit channels, each of which can access its own selected sample sequence, independent of the selections by other channels. Waveform sample readout by the channels occurs substantially simultaneously during a transmit event, producing a transmit beam from a transmit aperture with different pulse waveforms applied to different elements of the transmit aperture. Higher energy waveforms with wider pulse widths are applied to central elements of the aperture and lower energy waveforms with narrower pulse widths are applied to lateral elements of the aperture to produce an apodized transmit beam.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 23, 2020
    Inventors: Changhong Hu, Steven Russell Freeman
  • Publication number: 20190223831
    Abstract: A microconvex-linear ultrasound probe is used to image the insertion of a needle into a subject with a microconvex portion of a transducer array of the probe, then image penetration of the needle toward target anatomy with a linear portion of the transducer array by rotation of the probe against the subject. Ultrasound images produced by the probe are consistently displayed by control of a scan converter with an orientation signal. The orientation signal results from the processing of accelerometer signals from the probe, the identification of a portion of the transducer array which is in acoustic contact with the subject, and/or the identification or tracking of a feature in the ultrasound images such as the target anatomy.
    Type: Application
    Filed: June 12, 2017
    Publication date: July 25, 2019
    Inventor: Steven Russell Freeman
  • Publication number: 20190167235
    Abstract: Front-end circuitry for an ultrasound system is described which comprises a beamformer FPGA integrated circuit, transmit ICs with both pulse transmitters and linear waveform transmitters, transmit control and receiver ICs, and analog-to-digital converter (ADC) ICs. Waveform data for both the linear and pulser transmitters is stored in the transmit control and receiver ICs, saving pins on the FPGA, which is the conventional source of this data. The ADCs couple digital echo data to the FPGA for beamforming over serial bus lines, saving additional FPGA pins over a conventional parallel data arrangement. The inclusion of both pulser and linear waveform transmit capabilities in the transmit ICs enables the use of both types of transmitters in the formation of a multi-mode image, such as use of the pulsers for Doppler beams and linear transmitters for B mode beams in the formation of a colorflow image.
    Type: Application
    Filed: July 26, 2017
    Publication date: June 6, 2019
    Inventors: Steven Russell Freeman, Truong Huy Nguyen, Manfred Bartz, Jason Thanh Nguyen, Timothy Savord, Scott Owen Schweizer
  • Patent number: 10245005
    Abstract: An array transducer probe has transducer elements arranged in adjacent patches (62, 64, 66) of groups of transducer elements. A microbeamformer in the probe is coupled to the elements of the array to transmit ultrasound beams and delay echo signals received by the transducer elements. In a standard configuration the elements of each patch (62, 64, 66) are coupled to the summing node (72, 74, 76) of that patch. The elements of each patch may also be coupled to the summing nodes of one or more adjacent patches. For multiline (4?, 6?) reception some of the elements of the active aperture are coupled to the summing node of one patch, and other elements of the active aperture are coupled to the summing node of another patch. This coupling provides at least two different patch signals to channels (82, 84) of a system beamformer for multiline processing.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: April 2, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Steven Russell Freeman, Bernard Joseph Savord
  • Publication number: 20190094357
    Abstract: Systems and methods for filtering an analog waveform before it is sampled by an analog-to-digital converter (ADC) in an ultrasound system are provided. The waveform can be filtered by delaying the same waveform by two different time delays and combining the delayed waveforms to effectively cancel out the fundamental components, thereby providing more sensitive detection of harmonic components in received echo signals. This filtering approach leverages an architecture that can also be used for multiline beamforming to perform the temporal filtering, in which a single acoustic signal can be read out of the ARAM twice, separated by time, taking advantage of the fact that the ARAM allows for non-destructive read operations.
    Type: Application
    Filed: December 28, 2016
    Publication date: March 28, 2019
    Inventor: STEVEN RUSSELL FREEMAN
  • Publication number: 20180317888
    Abstract: An ultrasound microbeamformer for one or more transducer arrays includes a plurality of channels, each of which has two transmitters and a receiver which is selectively coupled to two or more transducer elements by T/R switches and dynamically switchable receive switches (RXSW). The transmitters enable different transducers to be actuated differently, such as transmitting a high frequency pulse or waveform with one transmitter and a low frequency pulse or waveform with the other transmitter. The transmitters may both be used during the same transmit-receive cycle to simultaneously transmit and receive both high and low frequency signals for the formation of a common image.
    Type: Application
    Filed: November 24, 2015
    Publication date: November 8, 2018
    Inventor: STEVEN RUSSELL FREEMAN
  • Publication number: 20180003810
    Abstract: Microbeamformers coupled to groups of array elements which partially beamform groups of elements for the formation of multiple receive lines are provided. In the microbeamformers, a delay line can be configured to output multiple signal streams that can be delayed by different amounts to support multiline receive in a microbeamformer. A read process during beamforming is not destructive, thereby allowing multiline receive beams to be generated from a single delay line.
    Type: Application
    Filed: January 18, 2016
    Publication date: January 4, 2018
    Applicant: Koninklijke Philips N.V.
    Inventors: Steven Russell FREEMAN, Michael Thomas MCMILLAN
  • Publication number: 20170258445
    Abstract: An ultrasound probe is provided for multi-faceted exams, such as for triage and emergency. The probe can include different transducer arrays, such as a linear, a curved linear, and a sector array that are combined into a single hand held unit with a wireless display. Related methods are provided, such as a method for automatically selecting the appropriate array for the user to scan with based on the intended exam and/or location of the probe on the body of a patient.
    Type: Application
    Filed: November 24, 2015
    Publication date: September 14, 2017
    Inventors: DANIEL VAN ALPHEN, MCKEE DUNN POLAND, DAVID HOPE SIMPSON, EARL M CANFIELD, ROBERT MESAROS, STEVEN RUSSELL FREEMAN
  • Patent number: 9730677
    Abstract: A matrix array ultrasound probe passively dissipates heat developed by the matrix array transducer and beamformer ASIC away from the distal end of the probe. The heat developed in the transducer stack is coupled to a metallic frame inside the handle of probe. A metallic heatspreader is thermally coupled to the probe frame to convey heat away from the frame. The heatspreader surrounds the inside of the probe handle and has an outer surface which is thermally coupled to the inner surface of the probe housing. Heat is thereby coupled evenly from the heatspreader into the housing without the development of hotspots in the housing which could be uncomfortable to the hand of the sonographer.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: August 15, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Richard Edward Davidsen, Steven Russell Freeman, Bernard Joseph Savord