Patents by Inventor Steven S. Lowenthal

Steven S. Lowenthal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8673134
    Abstract: A method for the removal of nitrogen compounds from FCC feed or from catalytically cracked distillates including FCC cycle oils by using formaldehyde to selectively couple organic heterocyclic nitrogen species in the FCC feed or FCC distillate to form higher boiling coupling products out of the boiling range of FCC distillate. Removal of the nitrogenous compounds improves the operation of subsequent hydrodesulfurization steps needed for the distillate fraction to conform to low sulfur standards. The formaldehyde is preferably used in the form of paraformaldehyde. The reaction between the nitrogenous compounds in the cycle oil fraction with the formaldehyde is conveniently carried out in the cycle oil pumparound circuit of the FCC main column.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stacey E. Siporin, David Thomas Ferrughelli, Steven S. Lowenthal, Randolph J. Smiley, Alan Roy Katritzky, Bruce R. Cook
  • Publication number: 20140027345
    Abstract: An integrated thermal and catalytic process for improving the yield of middle distillate from heavy petroleum oil feeds comprises cracking the heavy portion (345° C.+) of the feed in a thermal conversion zone, followed by hydrotreating the thermally cracked product and the lighter portion of the feed and then separating the hydrotreated product into a bottoms fraction which is passed to a catalytic cracking step.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stacey Erin Johnson, Benjamin S. Umansky, Steven S. Lowenthal, John Viets
  • Publication number: 20120103870
    Abstract: This disclosure relates to devices, e.g., baffle plate and combination dipleg valve/baffle devices, for use in achieving rapid disengagement of entrained hydrocarbons vapors, especially in high flux spent catalyst flow exiting from a cyclone separator dipleg in a fluidized catalytic cracking (FCC) unit. The baffle plate is preferably located near and typically below the catalyst dipleg of a fluid catalytic cracking reactor or separation zone and comprises a baffle plate body member having a surface, and in preferred embodiments also includes one or more apertures located on at least a portion of the surface. The valve/baffle is located at the outlet of the catalyst dipleg and comprises a combination valve and catalyst baffle in which the valve/baffle is designed to allow the top surface of the valve/baffle to seat against the dipleg outlet until the weight of the catalyst above the valve/baffle forces it to open.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 3, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: John Scott Buchanan, Steven S. Lowenthal, George A. Swan, III, James O. Guerra
  • Patent number: 8168061
    Abstract: This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 1, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Patent number: 8163168
    Abstract: The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: April 24, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20110132806
    Abstract: A method for the removal of nitrogen compounds from FCC feed or from catalytically cracked distillates including FCC cycle oils by using formaldehyde to selectively couple organic heterocyclic nitrogen species in the FCC feed or FCC distillate to form higher boiling coupling products out of the boiling range of FCC distillate. Removal of the nitrogenous compounds improves the operation of subsequent hydrodesulfurization steps needed for the distillate fraction to conform to low sulfur standards. The formaldehyde is preferably used in the form of paraformaldehyde. The reaction between the nitrogenous compounds in the cycle oil fraction with the formaldehyde is conveniently carried out in the cycle oil pumparound circuit of the FCC main column.
    Type: Application
    Filed: October 20, 2010
    Publication date: June 9, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stacey E. Siporin, David Thomas Ferrughelli, Steven S. Lowenthal, Randolph J. Smiley, Alan Roy Katritzky, Bruce R. Cook
  • Patent number: 7670478
    Abstract: This invention relates to an apparatus and process for injecting a petroleum feed. More particularly, a liquid petroleum feed is atomized with a nozzle assembly apparatus in which the apparatus has injection nozzles that produce a generally flat spray pattern of finely dispersed feed. The injection nozzles are each designed such that the overall effect of the different spray patterns from the individual nozzles provides a more uniform feed coverage across the catalyst stream.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: March 2, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: George A. Swan, III, Rustom M. Billimoria, Rathna P. Davuluri, Steven S. Lowenthal, Todd R. Steffens, Christopher G. Smalley
  • Publication number: 20100018896
    Abstract: This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 28, 2010
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20100018895
    Abstract: The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 28, 2010
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20030234209
    Abstract: This invention provides a method for controlling solids circulation in a gas-solids reaction system. The method entails aerating solid particles in a standpipe. Aeration fluid is injected into the standpipe at the appropriate location to increase apparent density of the solid particles.
    Type: Application
    Filed: May 2, 2003
    Publication date: December 25, 2003
    Inventors: Jeffrey S. Smith, Nicolas P. Coute, Rathna P. Davuluri, Steven S. Lowenthal, Suisheng M. Dou