Patents by Inventor Steven W. Johnston

Steven W. Johnston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961974
    Abstract: A battery cell capable of self-priming with molten metal produced within the battery cell includes a cathode compartment configured to contain a catholyte that releases metal ions, an anode compartment at least partially containing an anode current collector that receives electrons from an external power supply, an ion-selective membrane positioned between the cathode compartment and the anode compartment and configured to selectively transport the metal ions from the cathode compartment to the anode compartment when self-priming the battery cell, and an electron transport structure extending between the anode current collector and the ion-selective membrane within the anode compartment and configured to transport the electrons from the anode current collector to the ion-selective membrane when self-priming the battery cell.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: April 16, 2024
    Assignee: Enlighten Innovations Inc.
    Inventors: Sai V. Bhavaraju, Daniel S. Taggart, Mykola Makowsky, Joshua D. Johnston, Steven W. Hughes
  • Patent number: 8227335
    Abstract: Noble metal may be used as a non-oxidizing diffusion barrier to prevent diffusion from copper lines. A diffusion barrier may be formed of a noble metal formed over an adhesion promoting layer or by a noble metal cap over an oxidizable diffusion barrier. The copper lines may also be covered with a noble metal.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: July 24, 2012
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Valery M. Dubin, Michael L. McSwiney, Peter Moon
  • Publication number: 20100164108
    Abstract: A method for forming a copper interconnect is described. An opening in a dielectric layer disposed on a substrate is formed. A barrier layer is formed on the opening. A seed layer is formed on the barrier layer. The seed layer includes a noble metal copper alloy, the copper having less than 50% of the atomic weight of the noble metal copper alloy.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Inventors: Steven W. Johnston, Chin-Chang Cheng
  • Patent number: 7694413
    Abstract: A method for forming a copper interconnect is described. An opening in a dielectric layer disposed on a substrate is formed. A barrier layer is formed on the opening. A seed layer is formed on the barrier layer. The seed layer includes a noble metal copper alloy, the copper having less than 50% of the atomic weight of the noble metal copper alloy.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 13, 2010
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Chin-Chang Cheng
  • Patent number: 7605469
    Abstract: Apparatus and methods of fabricating an atomic layer deposited tantalum containing adhesion layer within at least one dielectric material in the formation of a metal, wherein the atomic layer deposition tantalum containing adhesion layer is sufficiently thin to minimize contact resistance and maximize the total cross-sectional area of metal, including but not limited to tungsten, within the contact.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: October 20, 2009
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Kerry Spurgin, Brennan L. Peterson
  • Patent number: 7601637
    Abstract: Apparatus and methods of fabricating an atomic layer deposited tantalum containing adhesion layer within at least one dielectric material in the formation of a metal, wherein the atomic layer deposition tantalum containing adhesion layer is sufficiently thin to minimize contact resistance and maximize the total cross-sectional area of metal, including but not limited to tungsten, within the contact.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: October 13, 2009
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Kerry Spurgin, Brennan L. Peterson
  • Patent number: 7550385
    Abstract: A method for forming a metal carbide layer begins with providing a substrate, an organometallic precursor material, at least one doping agent such as nitrogen, and a plasma such as a hydrogen plasma. The substrate is placed within a reaction chamber; and heated. A process cycle is then performed, where the process cycle includes pulsing the organometallic precursor material into the reaction chamber, pulsing the doping agent into the reaction chamber, and pulsing the plasma into the reaction chamber, such that the organometallic precursor material, the doping agent, and the plasma react at the surface of the substrate to form a metal carbide layer. The process cycles can be repeated and varied to form a graded metal carbide layer.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: June 23, 2009
    Assignee: Intel Corporation
    Inventors: Adrien R. Lavoie, Valery M. Dubin, Juan E. Dominguez, Kevin P. O'Brien, Steven W. Johnston, John D. Peck, David M. Thompson, David W. Peters
  • Publication number: 20090155998
    Abstract: Apparatus and methods of fabricating an atomic layer deposited tantalum containing adhesion layer within at least one dielectric material in the formation of a metal, wherein the atomic layer deposition tantalum containing adhesion layer is sufficiently thin to minimize contact resistance and maximize the total cross-sectional area of metal, including but not limited to tungsten, within the contact.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 18, 2009
    Inventors: Steven W. Johnston, Kerry Spurgin, Brennan L. Peterson
  • Patent number: 7459392
    Abstract: A barrier and seed layer for a semiconductor damascene process is described. The seed layer is formed from a noble metal with an intermediate region between the barrier and noble metal layers to prevent oxidation of the barrier layer.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: December 2, 2008
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Juan E. Dominguez, Michael L. McSwiney
  • Patent number: 7435679
    Abstract: Apparatus and methods of fabricating a microelectronic interconnect having an underlayer which acts as both a barrier layer and a seed layer. The underlayer is formed by co-depositing a noble metal and a barrier material, such as a refractory metal, or formed during thermal post-treatment, such as thermal annealing, conducted after two separately depositing the noble metal and the barrier material, which are substantially soluble in one another. The use of a barrier material within the underlayer prevents the electromigration of the interconnect conductive material and the use of noble material within the underlayer allows for the direct plating of the interconnect conductive material.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: October 14, 2008
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Juan E. Dominguez
  • Patent number: 7335587
    Abstract: A method for forming a semiconductor device is disclosed wherein atomic layer deposition (ALD) precursor species and/or by-product absorbed by an ILD are outgassed and/or neutralized prior to subsequently patterning the semiconductor device, thereby improving the ability to accurately define subsequently formed interconnect structures in the ILD.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: February 26, 2008
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Kevin P. O'Brien, Sridhar Balakrishnan
  • Publication number: 20080000678
    Abstract: A method for forming a copper interconnect is described. An opening in a dielectric layer disposed on a substrate is formed. A barrier layer is formed on the opening. A seed layer is formed on the barrier layer. The seed layer includes a noble metal copper alloy, the copper having less than 50% of the atomic weight of the noble metal copper alloy.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: Steven W. Johnston, Chin-Chang Cheng
  • Patent number: 7279423
    Abstract: Noble metal may be used as a non-oxidizing diffusion barrier to prevent diffusion from copper lines. A diffusion barrier may be formed of a noble metal formed over an adhesion promoting layer or by a noble metal cap over an oxidizable diffusion barrier. The copper lines may also be covered with a noble metal.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 9, 2007
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Valery M. Dubin, Michael L. McSwiney, Peter Moon
  • Patent number: 7241706
    Abstract: Embodiments of the invention provide a relatively hydrophilic layer in a low k dielectric layer. The hydrophilic layer may be formed by exposing the dielectric layer to light having enough energy to break Si—C and C—C bonds but not enough to break Si—O bonds.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: July 10, 2007
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Nate Baxter
  • Patent number: 7071126
    Abstract: An interlayer dielectric may be exposed to a gas cluster ion beam to densify an upper layer of the interlayer dielectric. As a result, the upper layer of the interlayer dielectric may be densified without separate deposition steps and without the need for etch stops that may adversely affect the capacitance of the overall structure.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: July 4, 2006
    Assignee: Intel Corporation
    Inventors: Steven W. Johnston, Kevin P. O'Brien
  • Patent number: 6867473
    Abstract: A surface may be selectively coated with a polymer using an induced surface grafting or polymerization reaction. The reaction proceeds in those regions that are polymerizable and not in other regions. Thus, a semiconductor structure having organic regions and metal regions exposed, for example, may have the organic polymers formed selectively on the organic regions and not on the unpolymerizable or metal regions.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: March 15, 2005
    Assignee: Intel Corporation
    Inventors: Michael D. Goodner, Grant Kloster, Steven W. Johnston
  • Publication number: 20040229452
    Abstract: An interlayer dielectric may be exposed to a gas cluster ion beam to densify an upper layer of the interlayer dielectric. As a result, the upper layer of the interlayer dielectric may be densified without separate deposition steps and without the need for etch stops that may adversely affect the capacitance of the overall structure.
    Type: Application
    Filed: May 15, 2003
    Publication date: November 18, 2004
    Inventors: Steven W. Johnston, Kevin P. O'Brien
  • Publication number: 20040104483
    Abstract: A surface may be selectively coated with a polymer using an induced surface grafting or polymerization reaction. The reaction proceeds in those regions that are polymerizable and not in other regions. Thus, a semiconductor structure having organic regions and metal regions exposed, for example, may have the organic polymers formed selectively on the organic regions and not on the unpolymerizable or metal regions.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Inventors: Michael D. Goodner, Grant Kloster, Steven W. Johnston
  • Publication number: 20040084773
    Abstract: Noble metal may be used as a non-oxidizing diffusion barrier to prevent diffusion from copper lines. A diffusion barrier may be formed of a noble metal formed over an adhesion promoting layer or by a noble metal cap over an oxidizable diffusion barrier. The copper lines may also be covered with a noble metal.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Steven W. Johnston, Valery M. Dubin, Michael L. McSwiney, Peter Moon
  • Patent number: 6682989
    Abstract: A surface may be selectively coated with a polymer using an induced surface grafting or polymerization reaction. The reaction proceeds in those regions that are polymerizable and not in other regions. Thus, a semiconductor structure having organic regions and metal regions exposed, for example, may have the organic polymers formed selectively on the organic regions and not on the unpolymerizable or metal regions.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: January 27, 2004
    Assignee: Intel Corporation
    Inventors: Michael D. Goodner, Grant Kloster, Steven W. Johnston