Patents by Inventor Steven Y. Reece

Steven Y. Reece has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190067727
    Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials at least one of which is a sulfonated catechol.
    Type: Application
    Filed: November 1, 2018
    Publication date: February 28, 2019
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo
  • Patent number: 10164284
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: December 25, 2018
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo
  • Patent number: 10056639
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 21, 2018
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo
  • Patent number: 10014546
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 3, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: John Goeltz, Desiree Amadeo, Arthur J. Esswein, Thomas D. Jarvi, Evan R. King, Steven Y. Reece, Nitin Tyagi
  • Patent number: 9991544
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 5, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: John Goeltz, Desiree Amadeo, Arthur J. Esswein, Thomas D. Jarvi, Evan R. King, Steven Y. Reece, Nitin Tyagi
  • Patent number: 9991543
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: June 5, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo
  • Publication number: 20180090778
    Abstract: Active materials for flow batteries can include various coordination compounds formed from transition metals. Some compositions containing coordination compounds can include a substituted catecholate ligand having a structure of in a neutral form or a salt form, in which Z is a heteroatom functional group bound to the substituted catecholate ligand at an open aromatic ring position and n is an integer ranging between 1 and 4. When more than one Z is present, each Z can be the same or different. Electrolyte solutions can include such coordination compounds, and such electrolyte solutions can be incorporated within a flow battery.
    Type: Application
    Filed: November 2, 2017
    Publication date: March 29, 2018
    Inventor: Steven Y. REECE
  • Patent number: 9899694
    Abstract: The invention concerns flow batteries comprising: a first aqueous electrolyte comprising a first redox active material; a second aqueous electrolyte comprising a second redox active material; a first electrode in contact with the first aqueous electrolyte; a second electrode in contact with the second aqueous electrolyte and a separator disposed between the first aqueous electrolyte and the second aqueous electrolyte; the flow battery having an open circuit potential of at least 1.4 V, and is capable of operating or is operating at a current density at least about 50 mA/cm2, wherein both of the first and second redox active materials remain soluble in both the charged and discharged states. In certain embodiments, the redox active materials are metal ligand coordination compounds. The disclosure also describes systems comprising these flow batteries and methods of them.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 20, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, John Goeltz, Evan R. King, Desiree Amadeo, Nitin Tyagi, Thomas D. Jarvi
  • Patent number: 9865893
    Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and separators, wherein the separator is about 100 microns or less and the flow battery is capable of (a) operating with a current efficiency of at least 85% with a current density of at least about 100 mA/cm2; (b) operating with a round trip voltage efficiency of at least 60% with a current density of at least about 100 mA/cm2; and/or (c) giving rise to diffusion rates through the separator for the first active material, the second active material, or both, of about 1×10?7 mol/cm2-sec or less.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: January 9, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Thomas H. Madden, Thomas D. Jarvi, John Goeltz, Desiree Amadeo, Evan R. King, Nitin Tyagi
  • Publication number: 20170352905
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Inventors: JOHN GOELTZ, DESIREE AMADEO, ARTHUR J. ESSWEIN, THOMAS D. JARVI, EVAN R. KING, STEVEN Y. REECE, NITIN TYAGI
  • Patent number: 9837679
    Abstract: Active materials for flow batteries can include various coordination compounds formed from transition metals. Some compositions containing coordination compounds can include a substituted catecholate ligand having a structure of in a neutral form or a salt form, in which Z is a heteroatom functional group bound to the substituted catecholate ligand at an open aromatic ring position and n is an integer ranging between 1 and 4. When more than one Z is present, each Z can be the same or different. Electrolyte solutions can include such coordination compounds, and such electrolyte solutions can be incorporated within a flow battery.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 5, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventor: Steven Y. Reece
  • Patent number: 9768463
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 19, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: John Goeltz, Desiree Amadeo, Arthur J. Esswein, Thomas D. Jarvi, Evan R. King, Steven Y. Reece, Nitin Tyagi
  • Patent number: 9692077
    Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and ionomer membranes, wherein the charge of the redox active materials is of the same sign as that of the ionomer, so as to confer specific improvements.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 27, 2017
    Assignee: LOCKHEED MARTIN ADVANCED ENERGY STORAGE, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Steven Y. Reece, Evan R. King, Desiree Amadeo, Nitin Tyagi, Thomas D. Jarvi
  • Publication number: 20170098850
    Abstract: The invention concerns flow batteries comprising: a first half-cell comprising: (i) a first aqueous electrolyte comprising a first redox active material; and a first carbon electrode in contact with the first aqueous electrolyte; (ii) a second half-cell comprising: a second aqueous electrolyte comprising a second redox active material; and a second carbon electrode in contact with the second aqueous electrolyte; and (iii) a separator disposed between the first half-cell and the second half-cell; the first half-cell having a half-cell potential equal to or more negative than about ?0.3 V with respect to a reversible hydrogen electrode; and the first aqueous electrolyte having a pH in a range of from about 8 to about 13, wherein the flow battery is capable of operating or is operating at a current density at least about 25 mA/cm2.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 6, 2017
    Inventors: Arthur J. ESSWEIN, Steven Y. REECE, John GOELTZ, Evan R. KING, Desiree AMADEO, Nitin TYAGI, Thomas D. JARVI
  • Patent number: 9559374
    Abstract: The invention concerns flow batteries comprising: a first half-cell comprising: (i) a first aqueous electrolyte comprising a first redox active material; and a first carbon electrode in contact with the first aqueous electrolyte; (ii) a second half-cell comprising: a second aqueous electrolyte comprising a second redox active material; and a second carbon electrode in contact with the second aqueous electrolyte; and (iii) a separator disposed between the first half-cell and the second half-cell; the first half-cell having a half-cell potential equal to or more negative than about ?0.3 V with respect to a reversible hydrogen electrode; and the first aqueous electrolyte having a pH in a range of from about 8 to about 13, wherein the flow battery is capable of operating or is operating at a current density at least about 25 mA/cm2.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: January 31, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, John Goeltz, Evan R. King, Desiree Amadeo, Nitin Tyagi, Thomas D. Jarvi
  • Publication number: 20160308235
    Abstract: Parasitic reactions, such as production of hydrogen and oxidation by oxygen, can occur under the operating conditions of flow batteries and other electrochemical systems. Such parasitic reactions can undesirably impact operating performance by altering the pH and/or state of charge of one or both electrolyte solutions in a flow battery. Electrochemical balancing cells configured for addressing the effects of parasitic reactions can include: a first chamber containing a first electrode, a second chamber containing a second electrode, a third chamber disposed between the first chamber and the second chamber, an ion-selective membrane forming a first interface between the first chamber and the third chamber, and a bipolar membrane forming a second interface between the second chamber and the third chamber. Such electrochemical balancing cells can be placed in fluid communication with at least one half-cell of a flow battery.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 20, 2016
    Inventor: Steven Y. REECE
  • Publication number: 20160308234
    Abstract: Parasitic reactions, such as production of hydrogen and oxidation by oxygen, can occur under the operating conditions of flow batteries and other electrochemical systems. Such parasitic reactions can undesirably impact operating performance by altering the pH and/or state of charge of one or both electrolyte solutions in a flow battery. Electrochemical balancing cells can allow rebalancing of electrolyte solutions to take place. Electrochemical balancing cells suitable for placement in fluid communication with both electrolyte solutions of a flow battery can include: a first chamber containing a first electrode, a second chamber containing a second electrode, a third chamber disposed between the first chamber and the second chamber, an ion-selective membrane forming a first interface between the first chamber and the third chamber, and a bipolar membrane forming a second interface between the second chamber and the third chamber.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 20, 2016
    Inventors: Steven Y. REECE, John GOELTZ, Joseph Johannes Henricus PIJPERS, Paravastu BADRINARAYANAN
  • Publication number: 20160293979
    Abstract: The present invention relates to methods and apparatuses for determining the ratio of oxidized and reduced forms of a redox couple in solution, each method comprising: (a) contacting a first stationary working electrode and a first counter electrode to the solution; (b) applying a first potential at the first working electrode and measuring a first constant current; (c) applying a second potential at the first working electrode and measuring a second constant current; wherein the sign of the first and second currents are not the same; and wherein the ratio of the absolute values of the first and second currents reflects the ratio of the oxidized and reduced forms of the redox couple in solution.
    Type: Application
    Filed: October 31, 2014
    Publication date: October 6, 2016
    Inventors: Evan R. KING, Kean DUFFEY, Adam MORRIS-COHEN, John GOELTZ, Steven Y. REECE
  • Publication number: 20160276694
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: John GOELTZ, Desiree AMADEO, Arthur J. ESSWEIN, Thomas D. JARVI, Evan R. KING, Steven Y. REECE, Nitin TYAGI
  • Publication number: 20160276695
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Inventors: Arthur J. ESSWEIN, Steven Y. REECE, Evan R. KING, John GOELTZ, Desiree D. AMADEO