Patents by Inventor Su-Chen Fan

Su-Chen Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10943990
    Abstract: Gate contact over active layout designs are provided. In one aspect, a method for forming a gate contact over active device includes: forming a device including metal gates over an active area of a wafer, and source/drains on opposite sides of the metal gates offset by gate spacers; recessing the metal gates/gate spacers; forming etch-selective spacers on top of the recessed gate spacers; forming gate caps on top of the recessed metal gates; forming source/drain contacts on the source/drains; forming source/drain caps on top of the source/drain contacts, wherein the etch-selective spacers provide etch selectivity to the gate caps and source/drain caps; and forming a metal gate contact that extends through one of the gate caps, wherein the etch-selective spacers prevent gate-to-source drain shorting by the metal gate contact. Alternate etch-selective configurations are also provided including a claw-shaped source/drain cap design. A gate contact over active device is also provided.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 9, 2021
    Assignee: International Business Machines Corporation
    Inventors: Andrew Greene, Victor W. C. Chan, Gangadhara Raja Muthinti, Veeraraghavan Basker, Junli Wang, Kisik Choi, Su Chen Fan
  • Patent number: 10896972
    Abstract: Embodiments of the invention are directed to a method and resulting structures for a semiconductor device having self-aligned contacts. In a non-limiting embodiment of the invention, a semiconductor fin is formed vertically extending from a bottom source/drain region of a substrate. A conductive gate is formed over a channel region of the semiconductor fin. A top source/drain region is formed on a surface of the semiconductor fin and a top metallization layer is formed on the top source/drain region. A dielectric cap is formed over the top metallization layer.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Steven Bentley, Su Chen Fan, Balasubramanian Pranatharthiharan, Junli Wang, Ruilong Xie
  • Publication number: 20210013108
    Abstract: A method for manufacturing a semiconductor device includes forming a first vertical transistor structure in a first device region on a substrate, and forming a second vertical transistor structure in a second device region on the substrate. The first vertical transistor structure includes a first plurality of fins, and the second vertical transistor structure includes a second plurality of fins. A plurality of first source/drain regions are grown from upper portions of the first plurality of fins, and a contact liner layer is formed on the first source/drain regions. The method further includes forming a plurality of first silicide portions from the contact liner layer on the first source/drain regions, and forming a plurality of second silicide portions on a plurality of second source/drain regions extending from upper portions of the second plurality of fins. The second silicide portions have a different composition than the first silicide portions.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 14, 2021
    Inventors: Heng Wu, Su Chen Fan, Ruilong Xie, Huai Huang
  • Publication number: 20210005735
    Abstract: A semiconductor includes a semiconductor substrate having a bottom source/drain region and a vertical semiconductor fin having a bottom end that contacts the semiconductor substrate. The semiconductor device further includes a top source/drain region on a top end of the vertical semiconductor. The top source/drain region is separated from the semiconductor substrate by the vertical semiconductor fin. The semiconductor device further includes an electrically conductive cap on an outer surface of the top source/drain region.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Christopher J. Waskiewicz, Su Chen Fan, Hari Prasad Amanapu, Hemanth Jagannathan
  • Patent number: 10879375
    Abstract: A gate tie-down structure includes a gate structure including a gate conductor and gate spacers and inner spacers formed on the gate spacers. Trench contacts are formed on sides of the gate structure. An interlevel dielectric (ILD) has a thickness formed over the gate structure. A horizontal connection is formed within the thickness of the ILD over an active area connecting the gate conductor and one of the trench contacts over one of the inner spacers.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: December 29, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Su Chen Fan, Andre P. Labonte, Lars W. Liebmann, Sanjay C. Mehta
  • Publication number: 20200381296
    Abstract: A method includes applying a first dielectric material onto a semiconductor substrate to form a first dielectric layer on the semiconductor substrate, creating a plurality of trenches in the dielectric layer, depositing a sacrificial material within the trenches of the dielectric layer, removing the sacrificial material from at least a first segment of a first trench of the trenches, depositing a second dielectric fill material into the first segment of the first trench where the sacrificial material was removed, removing the sacrificial material from at least some of the remaining trenches and depositing a metallic material within the first trench to define at least first and second lines in the first trench and form a metallic interconnect structure.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Su Chen Fan, Ruilong Xie, Andrew Greene, Veeraraghavan S. Basker
  • Patent number: 10832943
    Abstract: A method for forming a semiconductor structure is provided. The method includes depositing a dielectric material in a first opening above a first source/drain region in a first region of the semiconductor structure and in a second and a third opening above a respective second and a third source/drain region in a second region of the silicon structure. There is a gate region between the second and third source/drain regions. The method etches away the dielectric material deposited in the first opening and deposits an organic material in the first opening. The method further etches a region above the gate region between the second and third source/drain regions to expose the gate region and form a fourth opening and removes the organic material from the first opening. The method deposits a metal in the first opening and the fourth opening.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Cheng Chi, Kangguo Cheng, Ruilong Xie
  • Patent number: 10833173
    Abstract: A semiconductor includes a semiconductor substrate having a bottom source/drain region and a vertical semiconductor fin having a bottom end that contacts the semiconductor substrate. The semiconductor device further includes a top source/drain region on a top end of the vertical semiconductor. The top source/drain region is separated from the semiconductor substrate by the vertical semiconductor fin. The semiconductor device further includes an electrically conductive cap on an outer surface of the top source/drain region.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher J. Waskiewicz, Su Chen Fan, Hari Prasad Amanapu, Hemanth Jagannathan
  • Patent number: 10832961
    Abstract: Embodiments of the invention are directed to a method of forming an integrated circuit (IC). The method includes forming a first transistor and a second transistor over a substrate. The first transistor includes a first gate structure having a first gate spacer, and the second transistor includes a second gate structure having a second gate spacer. A top portion of the first gate spacer is replaced with a first sacrificial gate spacer region, and a top portion of the second gate spacer is replaced with a second sacrificial gate spacer region. A source or drain (S/D) conductive plug trench and a S/D cap trench are formed in the dielectric region of the IC and positioned over a S/D region of the first transistor. A volume of the S/D cap trench is increased by removing the first sacrificial gate spacer region and/or the second sacrificial gate spacer region.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Ruilong Xie, Veeraraghavan S. Basker, Andre P. Labonte, Chanro Park
  • Patent number: 10818548
    Abstract: Various semiconductor fabrication methods and structures are disclosed for cost effectively fabricating a self-aligned contact. A source-drain active region is on a substrate and horizontally extends to sidewall spacers of two adjacent gate stacks on the substrate. A conductive material layer including Titanium is formed by selective deposition on the source-drain active area. An interlevel dielectric (ILD) layer is deposited over the source-drain active area and the two gate stacks. Vertical directional etching in the ILD layer forms a vertical trench contacting the conductive material layer. Selective wet etching in the vertical trench selectively etches the conductive material layer and forms a void therein. Deposition of a second conductive material in the vertical trench fills the vertical trench, including the void, and the second conductive material contacts the top surface of the source-drain active area to form a source-drain self-aligned contact.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 27, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kafai Lai, Chih-Chao Yang, Yongan Xu, Su Chen Fan
  • Publication number: 20200335401
    Abstract: Embodiments of the invention are directed to a method of forming an integrated circuit (IC). The method includes forming a first transistor and a second transistor over a substrate. The first transistor includes a first gate structure having a first gate spacer, and the second transistor includes a second gate structure having a second gate spacer. A top portion of the first gate spacer is replaced with a first sacrificial gate spacer region, and a top portion of the second gate spacer is replaced with a second sacrificial gate spacer region. A source or drain (S/D) conductive plug trench and a S/D cap trench are formed in the dielectric region of the IC and positioned over a S/D region of the first transistor. A volume of the S/D cap trench is increased by removing the first sacrificial gate spacer region and/or the second sacrificial gate spacer region.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Inventors: Su Chen Fan, Ruilong Xie, Veeraraghavan S. Basker, Andre P. Labonte, Chanro Park
  • Patent number: 10804148
    Abstract: Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 13, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Jeffrey C. Shearer, Robert C. Wong, Ruilong Xie
  • Publication number: 20200321244
    Abstract: A method for forming a semiconductor structure is provided. The method includes depositing a dielectric material in a first opening above a first source/drain region in a first region of the semiconductor structure and in a second and a third opening above a respective second and a third source/drain region in a second region of the silicon structure. There is a gate region between the second and third source/drain regions. The method etches away the dielectric material deposited in the first opening and deposits an organic material in the first opening. The method further etches a region above the gate region between the second and third source/drain regions to expose the gate region and form a fourth opening and removes the organic material from the first opening. The method deposits a metal in the first opening and the fourth opening.
    Type: Application
    Filed: April 2, 2019
    Publication date: October 8, 2020
    Inventors: Su Chen Fan, Cheng Chi, Kangguo Cheng, Ruilong Xie
  • Patent number: 10796957
    Abstract: Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: October 6, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Jeffrey C. Shearer, Robert C. Wong, Ruilong Xie
  • Publication number: 20200295156
    Abstract: Semiconductor devices and methods of forming the same include forming a gate stack in contact with sidewalls of a semiconductor fin and on a bottom spacer over a bottom source/drain region. An encapsulating material is selectively deposited over the gate stack, leaving the bottom spacer exposed. An inter-layer dielectric is formed over the encapsulating material. A via is formed in the inter-layer dielectric to contact the bottom source/drain layer.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Inventors: Su Chen Fan, Ekmini A. De Silva, Sivananda K. Kanakasabapathy
  • Publication number: 20200279925
    Abstract: A method of forming a semiconductor structure includes the following steps. At least a first source/drain region and a second source/drain region are formed in a substrate. At least a first sacrificial layer and a second sacrificial layer are respectively formed over the first source/drain region and the second source/drain region. A spacer layer is formed on at least a top surface of the substrate and around sides of the first sacrificial layer and the second sacrificial layer. The spacer layer includes an electrical-isolating material. The first sacrificial layer and a second sacrificial layer are removed to form a first open trench and a second open trench. The first open trench and the second open trench are filled with metal contact material to form a first metal contact and a second metal contact electrically isolated from each other by the spacer layer.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Su Chen Fan, Yann Mignot, Hsueh-Chung Chen, James J. Kelly
  • Patent number: 10727317
    Abstract: A method for fabricating a semiconductor device includes forming at least one contact trench corresponding to at least one bottom contact area associated with at least one vertical transistor, laterally etching through the at least one contact trench to form at least one bottom contact region corresponding to the at least one bottom contact area, and filling the at least one bottom contact region with a conductive material to form at least one bottom contact.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: July 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Ekmini A. De Silva, Sivananda K. Kanakasabapathy
  • Publication number: 20200203156
    Abstract: Various methods and structures for fabricating a semiconductor structure. The semiconductor structure includes in a top layer of a semiconductor stack a semiconductor contact located according to a first horizontal pitch. A first metallization layer is disposed directly on the top layer and includes a metallization contact located according to a second horizontal pitch, the second horizontal pitch being different from the first horizontal pitch such that the location of the metallization contact is vertically mismatched from the location of the semiconductor contact. A second metallization layer is disposed directly on the first metallization layer. The second metallization layer includes a super viabar structure that forms an electrical interconnect, in the second metallization layer, between the semiconductor contact in the top layer of the semiconductor stack and the metallization contact in the first metallization layer.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Su Chen FAN, Hsueh-Chung CHEN, Yann MIGNOT, James J. KELLY, Terence B. HOOK
  • Patent number: 10685876
    Abstract: Embodiments of the invention are directed to an interconnect stack including a first dielectric layer, a first trench formed in the first dielectric layer, and a first liner deposited in the first trench, wherein the first liner defines a second trench. A first conductive material is in the second trench and deposited over the first dielectric layer and the first conductive material. A third trench extends through the second dielectric layer and is over the first conductive material. A bottom surface of the third trench includes at least a portion of the top surface of the first conductive material. A second liner is in the third trench, on sidewalls of the third trench, and also on the portion of the top surface of the first conductive material. The second liner functions as a cap region configured to counter electro-migration or surface migration of the first conductive material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Hemanth Jagannathan, Raghuveer R. Patlolla, Cornelius Brown Peethala
  • Patent number: 10658190
    Abstract: Extreme ultraviolet (EUV) lithographic patterning methods are provided which implement directional deposition on the EUV resist mask to improve selectivity and critical dimension control during the patterning of features in multiple layers. A hard mask material is deposited on a substrate structure using directional deposition. The hard mask material forms a hard mask layer that covers patterning features of an EUV resist mask of the substrate structure. The hard mask material is etched selective to a layer underlying the EUV resist mask to remove portions of the hard mask material that were deposited on the underlying layer during the directional deposition without uncovering the patterning features of the EUV resist mask. At least one layer of the substrate structure is patterned based on the EUV resist mask and the hard mask layer.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yongan Xu, Ekmini Anuja De Silva, Su Chen Fan, Yann Mignot