Patents by Inventor Subham Ghosh

Subham Ghosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9757567
    Abstract: Methods and/or devices may be configured to monitor ventricular activation times and modify an atrioventricular delay (AV delay) based on the monitored ventricular activation times. Further, the methods and/or devices may determine whether the AV delay should be modified based on the measured activation times before modifying the AV delay.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: September 12, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Robert W Stadler
  • Patent number: 9750941
    Abstract: A system and method for identifying whether local tissue latency is present. The system and method comprises an implanted lead having a first electrode for cardiac pacing and sensing. A sensing module for sensing heart activity with the first electrode to produce an electrogram (EGM) waveform. A processor is configured to receive the EGM waveform and extract two or more features from the EGM waveform representative of heart activity in response to monoventricular or biventricular pacing stimulus at the electrode and identify local tissue latency at a site of the first electrode based upon at least two of the extracted features indicating local tissue latency.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 5, 2017
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Publication number: 20170246460
    Abstract: Methods and systems of evaluating cardiac pacing in candidate patients for cardiac resynchronization therapy and cardiac resynchronization therapy patients are disclosed. The methods and systems disclosed allow treatments to be personalized to patients by measuring the extent of tissue capture from cardiac pacing under various therapy parameter conditions. Systems and methods of optimizing right ventricle only cardiac pacing are also disclosed.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 31, 2017
    Inventor: Subham Ghosh
  • Publication number: 20170246461
    Abstract: Methods and systems of evaluating cardiac pacing in candidate patients for cardiac resynchronization therapy and cardiac resynchronization therapy patients are disclosed. The methods and systems disclosed allow treatments to be personalized to patients by measuring the extent of tissue capture from cardiac pacing under various therapy parameter conditions. Systems and methods of optimizing right ventricle only cardiac pacing are also disclosed.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 31, 2017
    Inventor: Subham Ghosh
  • Patent number: 9737223
    Abstract: A system and associated method is disclosed for determining whether signal is valid. The system comprises an electrode apparatus comprising a plurality of electrodes configured to be located proximate tissue of a patient. A display apparatus comprising a graphical user interface, wherein the graphical user interface is configured to present information to a user. A computing apparatus coupled to the electrode apparatus and display apparatus, wherein the computing apparatus is configured to determine whether a signal acquired from a channel associated with an electrode from the plurality of electrodes is valid and sufficiently strong by i) calculating a first derivative of the signal; ii) determining a minimum and maximum derivative from the first derivative; iii) determining whether signs of the minimum and maximum derivative are different; and in response to determining whether the signs of the minimum and maximum derivative are different, displaying on a display apparatus whether the signal is valid.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: August 22, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: Juan Du, Subham Ghosh
  • Patent number: 9700728
    Abstract: A system and method select a pacing site for a cardiac pacing therapy. A change from a baseline mechanical activity is extracted from a signal of mechanical heart activity during pacing at each one of multiple pacing sites along a heart chamber. A change from a baseline electrical activity is extracted from a signal of electrical heart activity during pacing at each of the of pacing sites. The pacing sites are sorted in a first order based upon the changes in mechanical heart activity and in a second order based upon the changes in electrical heart activity. A pacing site is selected from the multiple pacing sites as a common pacing site between the first order and the second order.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: July 11, 2017
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 9700729
    Abstract: Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a right ventricular electrode and a plurality of left ventricular electrodes. Pacing using the right ventricular electrode and a first one of the left ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Computing a first degree of resynchronization based on a sum of differences of activation times and corresponding activation times. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Computing a second degree of resynchronization based on the sum of differences of activation times and corresponding activation times.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: July 11, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Robert W Stadler
  • Publication number: 20170143976
    Abstract: An exemplary computer-implemented method is disclosed for detection of onset of depolarization on far-field electrograms (EGMs) or electrocardiogram (ECG)-or ECG-like signals. The method includes determining a baseline rhythm using a plurality of body-surface electrodes. The baseline rhythm includes an atrial marker and a ventricular marker. A pre-specified window is defined as being between the atrial marker and the ventricular marker. A low pass filter is applied to a signal within the window. A rectified slope of the signal within the window is determined. A determination is made as to whether a time point (t1) is present such that the rectified slope exceeds 10% of a maximum value of the rectified slope. A point of onset of a depolarization complex in the signal is determined. The point of onset occurs at a largest curvature in the signal within the window.
    Type: Application
    Filed: December 2, 2016
    Publication date: May 25, 2017
    Inventor: Subham Ghosh
  • Patent number: 9656087
    Abstract: An implantable medical device and medical device system for delivering a bi-ventricular pacing therapy that includes a plurality of electrodes to sense a cardiac signal, an emitting device to emit a trigger signal to control delivery of the bi-ventricular pacing, and a processor configured to compare the sensed cardiac signal associated with the delivered bi-ventricular pacing to at least one of an intrinsic beat template and an RV template associated with a morphology of RV-only pacing therapy, determine whether an offset interval associated with the bi-ventricular pacing therapy is set to a maximum offset interval level in response to the comparing, adjust the offset interval in response to the offset interval not being set to the maximum offset interval level, and generate the trigger signal to be emitted by the emitting device to subsequently deliver the bi-ventricular pacing therapy having the adjusted offset interval.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: May 23, 2017
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 9649497
    Abstract: A system and method control a pacing parameter in a closed-loop manner by determining a value of an EGM-based index corresponding an optimal electrical activation condition of a patient's heart and adjusting a pacing therapy to maintain the EGM-based index value. The closed loop control method performed by the system may establish a relationship between an EGM-based index and multiple settings of a pacing control parameter. Values of the EGM-based index are stored with corresponding setting shifts relative to a previously established optimal setting. A processor of an implantable medical device monitors the EGM-based index during cardiac pacing. Responsive to detecting an EGM-based index value corresponding to a non-optimal setting of the control parameter, the processor determines an adjustment of the control parameter from the stored index values and corresponding setting shifts.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: May 16, 2017
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Publication number: 20170120058
    Abstract: A medical device system for controlling ventricular pacing therapy during cardiac resynchronization therapy that includes a sensing device to sense a cardiac signal and emit a trigger signal in response to the sensed cardiac signal, a therapy delivery device to deliver the ventricular pacing in response to the emitted trigger signal, and a processor configured to identify a fiducial point of the cardiac signal sensed in real-time, set a window comprising a start point positioned a first distance prior to the fiducial point and an endpoint positioned a second distance less than the first distance subsequent to the fiducial point, determine a signal characteristic of the cardiac signal within the window, determine whether a P-wave is detected in response to the signal characteristic, determine whether an atrio-ventricular interval timer has expired, and emit a trigger signal to deliver the ventricular pacing timed off of the local maximum in response to the P-wave being detected and not timed off of the local m
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Subham Ghosh, Kushagr Gupta
  • Patent number: 9610045
    Abstract: A system and associated method is disclosed for determining whether signal is valid. The system comprises an electrode apparatus comprising a plurality of electrodes configured to be located proximate tissue of a patient. A display apparatus comprising a graphical user interface, wherein the graphical user interface is configured to present information to a user. A computing apparatus coupled to the electrode apparatus and display apparatus, wherein the computing apparatus is configured to determine whether a signal acquired from a channel associated with an electrode from the plurality of electrodes is valid and sufficiently strong by i) calculating a first derivative of the signal; ii) determining a minimum and maximum derivative from the first derivative; iii) determining whether signs of the minimum and maximum derivative are different; and in response to determining whether the signs of the minimum and maximum derivative are different, displaying on a display apparatus whether the signal is valid.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 4, 2017
    Assignee: Medtronic, Inc.
    Inventors: Juan Du, Subham Ghosh
  • Patent number: 9604064
    Abstract: Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a plurality of left ventricular electrodes. Pacing using a first one of the left ventricular electrodes and measuring activation times at other ones of the left and right ventricular electrodes. Pacing using a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Employing weighted sums of the measured activation times to measure a fusion index and select one of the left ventricular electrodes for delivery of subsequent pacing pulses based on comparing fusion indices during pacing from different LV electrodes. One or more embodiments use the same fusion index to select an optimal A-V delay by comparing fusion indices during pacing with different A-V delays at resting atrial rates as well as rates above the resting rate.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 28, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Robert W Stadler
  • Patent number: 9603651
    Abstract: A base cardiac electrogram signal at a base electrode is recorded for a predetermined amount of time. A plurality of cardiac electrogram signals at a plurality of electrodes other than the base electrode are recorded for the predetermined amount of time. The base cardiac electrogram signal is compared with each of the plurality of cardiac electrogram signals. The similarities between the base cardiac electrogram signal and each of the plurality of cardiac electrogram signals is determined. A specific area of cardiac tissue where the base electrode is positioned is mapped based at least in part on the determined similarities.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: March 28, 2017
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 9591982
    Abstract: Systems and methods are described herein for assisting a user in evaluation of cardiac therapy. The systems and methods may monitor electrical activity of a patient using external electrode apparatus to provide baseline cardiac information and therapy cardiac information and determine whether the cardiac pacing, or therapy, location is acceptable. If the cardiac pacing, or therapy, location is unacceptable, location information representative of a location that may more effective may be generated based on the therapy cardiac information.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: March 14, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey Gillberg
  • Patent number: 9586052
    Abstract: Systems and methods are described herein for assisting a user in evaluation of cardiac therapy. The systems and methods may monitor electrical activity of a patient using external electrode apparatus to provide baseline electrical heterogeneity information and therapy electrical heterogeneity information. The electrical heterogeneity information may be used to generate surrogate hemodynamic information.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey Gillberg, Subham Ghosh, Tarek Haddad
  • Patent number: 9586050
    Abstract: Systems and methods are described herein for assisting a user in identification and/or optimization of an atrioventricular (A-V) interval for use in cardiac therapy. The systems and methods may monitor electrical activity of a patient using external electrode apparatus to provide electrical heterogeneity information for a plurality of different A-V intervals and may identify an A-V interval based on the electrical heterogeneity information.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey Gillberg
  • Publication number: 20170049347
    Abstract: Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
    Type: Application
    Filed: November 7, 2016
    Publication date: February 23, 2017
    Inventors: Subham Ghosh, Jeffrey M. Gillberg, Robert W. Stadler
  • Patent number: 9572505
    Abstract: In one example, a method includes determining a slope of a cardiac electrogram. The method may also include determining a threshold value based on a maximum of the slope of the cardiac electrogram. The method may further include identifying a last point of the cardiac electrogram before the slope of the cardiac electrogram crosses the threshold as one of an onset or an offset of a wave. In another example, the method further includes receiving an indication of local ventricular motion associated with a cardiac contraction, and determining an electromechanical delay between the identified onset and the local ventricular motion. Some examples include providing the electromechanical delay for configuration of cardiac resynchronization therapy.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 21, 2017
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Teresa A. Whitman
  • Publication number: 20170028206
    Abstract: A medical device and medical device system for determining capture during delivery of a ventricular pacing therapy that includes a subcutaneous sensing device comprising a subcutaneous electrode to sense a subcutaneous cardiac signal and to emit a trigger signal in response to the sensed cardiac signal, an intracardiac therapy delivery device capable of being implanted within a left ventricle of a heart to receive the trigger signal and deliver the ventricular pacing therapy to the left ventricle in response to the emitted trigger signal, and a processor positioned within the subcutaneous sensing device, the processor configured to compare a beat of the subcutaneous cardiac signal sensed by the sensing device subsequent to the ventricular pacing therapy being delivered to a baseline template associated with a non-paced beat, and determine whether the delivered ventricular pacing therapy captures the left ventricle in response to the comparing.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 2, 2017
    Inventor: Subham Ghosh