Patents by Inventor Subramanian S. Iyer

Subramanian S. Iyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8455270
    Abstract: A process of forming three-dimensional (3D) die. A plurality of wafers are tested for die that pass (good die) or fail (bad die) predetermined test criteria. Two tested wafers are placed in proximity to each other. The wafers are aligned in such a manner so as to maximize the number of good die aligned between the two wafers. The two wafers are then bonded together and diced into individual stacks of bonded good die.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer
  • Publication number: 20130133031
    Abstract: A random intrinsic chip ID generation employs a retention fail signature. A 1st and 2nd ID are generated using testing settings with a 1st setting more restrictive than the 2nd, creating more fails in the 1st ID bit string that includes 2nd ID bit string. A retention pause time controls the number of retention fails, adjusted by a BIST engine, wherein the fail numbers satisfy a predetermined fail target. Verification confirms whether the 1st ID includes the 2nd ID bit string, the ID being the one used for authentication. Authentication is enabled by a 3rd ID with intermediate condition such that 1st ID includes 3rd ID bit string and 3rd ID includes 2nd ID bit string. The intermediate condition includes a guard-band to eliminate bit instability problem near the 1st and 2nd ID boundary. The intermediate condition is changed at each ID read operation, resulting in a more secure identification.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: International Business Machines Corporation
    Inventors: Daniel J. Fainstein, Alberto Cestero, Subramanian S. Iyer, Toshiaki Kirihata, Norman W. Robson, Sami Rosenblatt
  • Patent number: 8399336
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer that includes active circuitry is provided, and a first portion of the first active circuitry layer wafer is removed such that a second portion of the first active circuitry layer wafer remains. Another wafer that includes active circuitry is provided, and the other wafer is bonded to the second portion of the first active circuitry layer wafer. The first active circuitry layer wafer is lower-cost than the other wafer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: March 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Patent number: 8372725
    Abstract: Structures and methods are provided for forming pre-fabricated deep trench capacitors for SOI substrates. The method includes forming a trench in a substrate and forming a dielectric material in the trench. The method further includes depositing a conductive material over the dielectric material in the trench and forming an insulator layer over the conductive material and the substrate.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert Hannon, Subramanian S. Iyer, Gerd Pfeiffer, Ravi M. Todi, Kevin R. Winstel
  • Publication number: 20130009277
    Abstract: A structure and method for forming isolation and a buried plate for a trench capacitor is disclosed. Embodiments of the structure comprise an epitaxial layer serving as the buried plate, and a bounded deep trench isolation area serving to isolate one or more deep trench structures. Embodiments of the method comprise angular implanting of the deep trench isolation area to form a P region at the base of the deep trench isolation area that serves as an anti-punch through implant.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Abhishek Dube, Subramanian S. Iyer, Babar Ali Khan, Oh-jung Kwon, Junedong Lee, Paul C. Parries, Chengwen Pei, Gerd Pfeiffer, Ravi M. Todi, Geng Wang
  • Patent number: 8350269
    Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., single-fin or multi-fin MUGFET, multiple series-connected single-fin, multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: January 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Subramanian S. Iyer, Edward J. Nowak
  • Publication number: 20120326309
    Abstract: The present disclosure provides a thermo-mechanically reliable copper TSV and a technique to form such TSV during BEOL processing. The TSV constitutes an annular trench which extends through the semiconductor substrate. The substrate defines the inner and outer sidewalls of the trench, which sidewalls are separated by a distance within the range of 5 to 10 microns. A conductive path comprising copper or a copper alloy extends within said trench from an upper surface of said first dielectric layer through said substrate. The substrate thickness can be 60 microns or less. A dielectric layer having interconnect metallization conductively connected to the conductive path is formed directly over said annular trench.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: PAUL S ANDRY, Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Emily R. Kinser, Cornelia K. Tsang, Richard P. Volant
  • Publication number: 20120309127
    Abstract: A computer readable medium is provided that is encoded with a program comprising instructions for performing a method for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. FAROOQ, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Publication number: 20120299200
    Abstract: A 3D integrated circuit structure is provided. The 3D integrated circuit structure includes an interface wafer including a first wiring layer, a first active circuitry layer including active circuitry, and a wafer including active circuitry. The first active circuitry layer is bonded face down to the interface wafer, and the wafer is bonded face down to the first active circuitry layer. The first active circuitry layer is lower-cost than the wafer.
    Type: Application
    Filed: August 10, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. FAROOQ, Robert HANNON, Subramanian S. IYER, Steven J. KOESTER, Fei LIU, Sampath PURUSHOTHAMAN, Albert M. YOUNG, Roy R. YU
  • Patent number: 8298914
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer. Also provided is a tangible computer readable medium encoded with a program that comprises instructions for performing such a method.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Patent number: 8298908
    Abstract: A structure and method for forming isolation and a buried plate for a trench capacitor is disclosed. Embodiments of the structure comprise an epitaxial layer serving as the buried plate, and a bounded deep trench isolation area serving to isolate one or more deep trench structures. Embodiments of the method comprise angular implanting of the deep trench isolation area to form a P region at the base of the deep trench isolation area that serves as an anti-punch through implant.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Abhishek Dube, Subramanian S. Iyer, Babar Ali Khan, Oh-jung Kwon, Junedong Lee, Paul C. Parries, Chengwen Pei, Gerd Pfeiffer, Ravi M. Todi, Geng Wang
  • Patent number: 8280382
    Abstract: A cellular communication system comprises an access point (101) which supports an underlay cell of a first cell on an underlay frequency using another frequency. A proximity detector (113) detects user equipment (109) in response to a wireless transmission therefrom, which uses a different transmission technology from a transmission of the cellular communication system. In response to the proximity detection, the access point (101) temporarily transmits a pilot signal on the first cell frequency. The user equipment (109) is then switched to the access point (109) and the underlay frequency in response to a detection indication from the user equipment (109) indicating that the pilot signal has been detected. Following the switch the access point (101) terminates the transmission of the pilot signal.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 2, 2012
    Assignee: Motorola Mobility LLC
    Inventors: Gerard T. Foster, Trevor T. Hanna, Subramanian S. Iyer, Luis Lopes, Howard J. Thomas
  • Publication number: 20120205742
    Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., single-fin or multi-fin MUGFET, multiple series-connected single-fin, multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: International Business Machines Corporation
    Inventors: Subramanian S. Iyer, Edward J. Nowak
  • Patent number: 8227304
    Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on a bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., a single-fin or multi-fin MUGFET or multiple series-connected single-fin or multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Subramanian S. Iyer, Edward J. Nowak
  • Publication number: 20120171827
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Publication number: 20120153429
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P? layer, and the P? layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P? layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P? layer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 21, 2012
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. FAROOQ, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Sampath Purushothaman, Roy R. Yu
  • Publication number: 20120149173
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P? layer, and the P? layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P? layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P? layer. Also provided are a non-transitory computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Sampath Purushothaman, Roy R. Yu
  • Patent number: 8189522
    Abstract: An apparatus and method for communicating system information in a wireless communication network. A first step 200 includes defining unicast threshold parameter(s). A next step 201 includes receiving a request for system information. A next step 202, 204 includes determining if the system information exceeds the threshold parameter(s). A next step 206-216 includes scheduling an ad-hoc broadcast of the system information if the system information exceeds the threshold parameter(s). A next step 218 includes sending a pointer to the scheduled ad-hoc broadcast. A next step 220 includes broadcasting the network service provider information per the schedule.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 29, 2012
    Assignee: Motorola Mobility, Inc.
    Inventors: Subramanian S. Iyer, Christopher R. Cushing, Ajaykumar R. Idnani, David R. Maas, J. Chris Stanaway
  • Patent number: 8188528
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 29, 2012
    Assignee: International Buiness Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Publication number: 20120126425
    Abstract: A structure of connecting at least two integrated circuits in a 3D arrangement by a metal-filled through silicon via which simultaneously connects a connection pad in a first integrated circuit and a connection pad in a second integrated circuit.
    Type: Application
    Filed: February 1, 2012
    Publication date: May 24, 2012
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Subramanian S. Iyer, Steven J. Koester, Huilong Zhu