Patents by Inventor Subramanya P. HERLE

Subramanya P. HERLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145763
    Abstract: Metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same are provided. In one or more embodiments, an anode electrode structure is provided and includes a current collector comprising copper, a lithium metal film formed on the current collector, a copper film formed on the lithium metal film, and a protective film formed on the copper film. The protective film is a lithium-ion conducting film can include lithium-ion conducting ceramic, a lithium-ion conducting glass, or ion conducting liquid crystal.
    Type: Application
    Filed: December 15, 2023
    Publication date: May 2, 2024
    Inventor: Subramanya P. HERLE
  • Patent number: 11969781
    Abstract: A method and apparatus for manufacturing a flexible layer stack, and to a flexible layer stack. Implementations of the present disclosure particularly relate to a method and apparatus for coating flexible substrates with a low melting temperature metal or metal alloy. In one implementation, a method is provided. The method includes delivering a transfer liquid to a quenching surface of a rotating casting drum. The method further includes forming a material layer stack over the rotating casting drum by delivering a molten metal or molten metal alloy toward the quenching surface of the rotating casting drum. The method further includes transferring the material layer stack from the rotating casting drum to a continuous flexible substrate, wherein the quenching surface of the rotating casting drum is cooled to a temperature at which the layers of the material layer stack solidify.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: April 30, 2024
    Assignee: Applied Materials, Inc.
    Inventor: Subramanya P. Herle
  • Patent number: 11888109
    Abstract: Metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same are provided. In one or more embodiments, an anode electrode structure is provided and includes a current collector comprising copper, a lithium metal film formed on the current collector, a copper film formed on the lithium metal film, and a protective film formed on the copper film. The protective film is a lithium-ion conducting film can include lithium-ion conducting ceramic, a lithium-ion conducting glass, or ion conducting liquid crystal.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Subramanya P. Herle
  • Publication number: 20240030417
    Abstract: In one implementation, an integrated processing tool for the deposition and processing of lithium metal in energy storage devices. The integrated processing tool may be a web tool. The integrated processing tool may comprises a reel-to-reel system for transporting a continuous sheet of material through the following chambers: a chamber for depositing a thin film of lithium metal on the continuous sheet of material and a chamber for depositing a protective film on the surface of the thin film of lithium metal. The chamber for depositing a thin film of lithium metal may include a PVD system, such as an electron-beam evaporator, a thin film transfer system, or a slot-die deposition system. The chamber for depositing a protective film on the lithium metal film may include a chamber for depositing an interleaf film or a chamber for depositing a lithium-ion conducting polymer on the lithium metal film.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Inventors: Subramanya P. HERLE, Dieter HAAS
  • Publication number: 20240014371
    Abstract: Embodiments of the present disclosure generally relate to battery technology, and more specifically, methods and systems for preparing lithium anodes. In one or more embodiments, a method for producing a lithium intercalated anode includes introducing a sacrificial substrate containing lithium films and an anode substrate containing graphite into a processing region within a chamber. The method also includes combining the sacrificial and anode substrates overlapping one another around a rewinder roller, rotating the rewinder roller to wind the sacrificial and anode substrates together to produce a rolled anode-sacrificial substrate bundle during a winding process. The method also includes heating the sacrificial substrate, the anode substrate, and/or the rolled anode-sacrificial substrate bundle while rotating the rewinder roller and applying a force to the rolled anode-sacrificial substrate bundle via an idle roller during the winding process.
    Type: Application
    Filed: May 19, 2023
    Publication date: January 11, 2024
    Inventors: PrasannaKalleshwara Buddappa RAMACHANDRAPPA, Sambhu Nath KUNDU, Visweswaren SIVARAMAKRISHNAN, Subramanya P. HERLE
  • Patent number: 11833580
    Abstract: A method and apparatus for manufacturing a flexible layer stack, and to a flexible layer stack. Implementations of the present disclosure particularly relate to a method and apparatus for coating flexible substrates with a low melting temperature metal or metal alloy. In one implementation, a method is provided. The method includes delivering a transfer liquid to a quenching surface of a rotating casting drum. The method further includes forming a material layer stack over the rotating casting drum by delivering a molten metal or molten metal alloy toward the quenching surface of the rotating casting drum. The method further includes transferring the material layer stack from the rotating casting drum to a continuous flexible substrate, wherein the quenching surface of the rotating casting drum is cooled to a temperature at which the layers of the material layer stack solidify.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: December 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Subramanya P. Herle
  • Patent number: 11817576
    Abstract: In one implementation, an integrated processing tool for the deposition and processing of lithium metal in energy storage devices. The integrated processing tool may be a web tool. The integrated processing tool may comprises a reel-to-reel system for transporting a continuous sheet of material through the following chambers: a chamber for depositing a thin film of lithium metal on the continuous sheet of material and a chamber for depositing a protective film on the surface of the thin film of lithium metal. The chamber for depositing a thin film of lithium metal may include a PVD system, such as an electron-beam evaporator, a thin film transfer system, or a slot-die deposition system. The chamber for depositing a protective film on the lithium metal film may include a chamber for depositing an interleaf film or a chamber for depositing a lithium-ion conducting polymer on the lithium metal film.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: November 14, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Subramanya P. Herle, Dieter Haas
  • Publication number: 20230275219
    Abstract: The present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, and methods for fabricating the same. In one implementation, a separator for a battery is provided. The separator comprises a substrate capable of conducting ions and at least one dielectric layer capable of conducting ions. The at least one dielectric layer at least partially covers the substrate and has a thickness of 1 nanometer to 2,000 nanometers.
    Type: Application
    Filed: May 10, 2023
    Publication date: August 31, 2023
    Inventor: Subramanya P. HERLE
  • Patent number: 11735723
    Abstract: Implementations described herein generally relate to metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper. The anode electrode structure further comprises a lithium metal film formed on the current collector. The anode electrode structure further comprises a solid electrolyte interface (SEI) film stack formed on the lithium metal film. The SEI film stack comprises a chalcogenide film formed on the lithium metal film. In one implementation, the SEI film stack further comprises a lithium oxide film formed on the chalcogenide film. In one implementation, the SEI film stack further comprises a lithium carbonate film formed on the lithium oxide film.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Girish Kumar Gopalakrishnan Nair, Subramanya P. Herle, Karl J. Armstrong
  • Publication number: 20230246163
    Abstract: A method and apparatus for forming metal electrode structures, more specifically lithium-containing anodes, high performance electrochemical devices, such as primary and secondary electrochemical devices, including the aforementioned lithium-containing electrodes. In one implementation, the method comprises forming a lithium metal film on a current collector. The current collector comprises copper and/or stainless steel. The method further comprises forming a protective film stack on the lithium metal film, comprising forming a first protective film on the lithium metal film. The first protective film is selected from a bismuth chalcogenide film, a copper chalcogenide film, a tin chalcogenide film, a gallium chalcogenide film, a germanium chalcogenide film, an indium chalcogenide film, a silver chalcogenide film, a dielectric film, a lithium fluoride film, or a combination thereof.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 3, 2023
    Inventor: Subramanya P. HERLE
  • Patent number: 11688851
    Abstract: ABSTRACT OF THE DISCLOSURE The present disclosure generally relates to battery anode structures with dielectric coating and methods of forming the same. In one implementation, a method of forming an anode structure is provided and includes exposing a material to be deposited on an anode positioned in a processing region to an evaporation process; flowing a reactive gas into the processing region; and reacting the reactive gas and the evaporated material to deposit a porous dielectric layer on at least a portion of the anode and form the anode structure. In another implementation, an anode electrode structure is provided and includes an anode containing at least one of lithium metal, lithium-alloy, or a mixture of lithium metal and lithium alloy; and at least one dielectric layer capable of conducting ions, wherein the at least one dielectric layer at least partially covers an anode surface and has a thickness of 1 to 2,000 nanometers.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 27, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Subramanya P. Herle
  • Publication number: 20230197922
    Abstract: Embodiments of the present disclosure generally relate to electrode coatings and methods of coating electrodes. In an embodiment, a method of depositing a structure on a lithium ion battery (LIB) anode is provided. The method includes accelerating particles in a working gas through a convergent-divergent nozzle to a process velocity that is from a critical velocity of the particles to an erosion velocity of the LIB anode, the particles comprising a metal and/or a Group III-VI element; heating or cooling the particles in the working gas at a softening temperature; ejecting the particles in the working gas from a nozzle outlet of the convergent-divergent nozzle, the particles ejected at the process velocity, wherein at least a portion of the particles are in solid phase when ejected from the convergent-divergent nozzle; and depositing a first structure on the LIB anode, the first structure comprising the metal and/or the Group III-VI element.
    Type: Application
    Filed: November 15, 2022
    Publication date: June 22, 2023
    Inventors: Sonal, David Masayuki ISHIKAWA, Sumedh Dattatraya ACHARYA, Ezhiylmurugan RANGASAMY, Subramanya P. HERLE
  • Publication number: 20230170580
    Abstract: Implementations of the present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, systems and methods for fabricating the same. In one implementation, a separator is provided. The separator comprises a polymer substrate, capable of conducting ions, having a first surface and a second surface opposing the first surface. The separator further comprises a first ceramic-containing layer, capable of conducting ions, formed on the first surface. The first ceramic-containing layer has a thickness in a range from about 1,000 nanometers to about 5,000 nanometers. The separator further comprises a second ceramic-containing layer, capable of conducting ions, formed on the second surface. The second ceramic-containing layer is a binder-free ceramic-containing layer and has a thickness in a range from about 1 nanometer to about 1,000 nanometers.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Inventors: Connie P. WANG, Wen SI, Yin Let SIM, Torsten DIETER, Roland TRASSL, Subramanya P. HERLE, Christoph DAUBE, Jian ZHU, James CUSHING
  • Publication number: 20230170581
    Abstract: Implementations of the present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, systems and methods for fabricating the same. In one implementation, a separator is provided. The separator comprises a polymer substrate, capable of conducting ions, having a first surface and a second surface opposing the first surface. The separator further comprises a first ceramic-containing layer, capable of conducting ions, formed on the first surface. The first ceramic-containing layer has a thickness in a range from about 1,000 nanometers to about 5,000 nanometers. The separator further comprises a second ceramic-containing layer, capable of conducting ions, formed on the second surface. The second ceramic-containing layer is a binder-free ceramic-containing layer and has a thickness in a range from about 1 nanometer to about 1,000 nanometers.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Inventors: Connie P. WANG, Wen SI, Yin Let SIM, Torsten DIETER, Roland TRASSL, Subramanya P. HERLE, Christoph DAUBE, Jian ZHU, James CUSHING
  • Publication number: 20230160821
    Abstract: Embodiments of the present disclosure generally relate to systems and methods for in-line measurement of alkali metal-containing structures or alkali ion-containing structures of, e.g., electrodes. In an embodiment, a system for processing an electrode is provided. The system includes a first processing chamber for forming an electrode comprising an alkali metal-containing structure. The system further includes a metrology station coupled to and in-line with the first processing chamber, the metrology station comprising: a source of radiation for delivering radiation to the alkali metal-containing structure, and an optical detector for receiving an emission of radiation emitted from the alkali metal-containing structure, and a processor configured to determine a characteristic of the alkali metal-containing structure of the electrode based on the emission of radiation.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 25, 2023
    Inventor: Subramanya P. HERLE
  • Patent number: 11631922
    Abstract: Implementations of the present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, and methods for fabricating the same. In one implementation, a method of forming a separator for a battery is provided. The method comprises exposing a metallic material to be deposited on a surface of an electrode structure positioned in a processing region to an evaporation process. The method further comprises flowing a reactive gas into the processing region. The method further comprises reacting the reactive gas and the evaporated metallic material to deposit a ceramic separator layer on the surface of the electrode structure.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: April 18, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Subramanya P. Herle
  • Patent number: 11631840
    Abstract: A method and apparatus for forming metal electrode structures, more specifically lithium-containing anodes, high performance electrochemical devices, such as primary and secondary electrochemical devices, including the aforementioned lithium-containing electrodes. In one implementation, the method comprises forming a lithium metal film on a current collector. The current collector comprises copper and/or stainless steel. The method further comprises forming a protective film stack on the lithium metal film, comprising forming a first protective film on the lithium metal film. The first protective film is selected from a bismuth chalcogenide film, a copper chalcogenide film, a tin chalcogenide film, a gallium chalcogenide film, a germanium chalcogenide film, an indium chalcogenide film, a silver chalcogenide film, a dielectric film, a lithium fluoride film, or a combination thereof.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: April 18, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Subramanya P. Herle
  • Publication number: 20230113276
    Abstract: Methods and apparatuses for processing lithium batteries with a laser source having a wide process window, high efficiency, and low cost are provided. The laser source is adapted to achieve high average power and a high frequency of picosecond pulses. The laser source can produce a line-shaped beam either in a fixed position or in scanning mode. The system can be operated in a dry room or vacuum environment. The system can include a debris removal mechanism, for example, inert gas flow, to the processing site to remove debris produced during the patterning process.
    Type: Application
    Filed: September 16, 2022
    Publication date: April 13, 2023
    Inventors: Wei-Sheng LEI, Girish Kumar GOPALAKRISHNAN NAIR, Kent Qiujing ZHAO, Daniel STOCK, Tobias STOLLEY, Thomas DEPPISCH, Jean DELMAS, Kenneth S. LEDFORD, Subramanya P. HERLE, Kiran VACHHANI, Mahendran CHIDAMBARAM, Roland TRASSL, Neil MORRISON, Frank SCHNAPPENBERGER, Kevin Laughton CUNNINGHAM, Stefan BANGERT, James CUSHING, Visweswaren SIVARAMAKRISHNAN
  • Patent number: 11597988
    Abstract: A web coating platform for depositing molten metal on flexible substrates is provided. The web coating platform can be used for manufacturing solid lithium anodes for use in energy storage devices, for example, rechargeable batteries. The coating platform can be designed for double-sided coating of a continuous flexible substrate (e.g., a copper foil) with molten lithium followed by double-sided lamination or passivation. The coating platform integrates novel coating elements unique to handling and processing molten metals. For example, some implementations of the present disclosure incorporate double-sided molten metal coating elements, which include at least one of a molten metal application assembly (e.g., kiss roller, slot-die, Meyer bar, and/or gravure roller), a primary melt pool assembly, a secondary melt pool assembly, and an engagement mechanism.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: March 7, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bernard Frey, Subramanya P. Herle
  • Patent number: 11597989
    Abstract: A web coating platform for depositing molten metal on flexible substrates is provided. The web coating platform can be used for manufacturing solid lithium anodes for use in energy storage devices, for example, rechargeable batteries. The coating platform can be designed for double-sided coating of a continuous flexible substrate (e.g., a copper foil) with molten lithium followed by double-sided lamination or passivation. The coating platform integrates novel coating elements unique to handling and processing molten metals. For example, some implementations of the present disclosure incorporate double-sided molten metal coating elements, which include at least one of a molten metal application assembly (e.g., kiss roller, slot-die, Meyer bar, and/or gravure roller), a primary melt pool assembly, a secondary melt pool assembly, and an engagement mechanism.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: March 7, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bernard Frey, Subramanya P. Herle