Patents by Inventor Sujanto Widjaja

Sujanto Widjaja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080166616
    Abstract: A solid oxide fuel cell comprising a thin ceramic electrolyte sheet having an increased street width is disclosed. Also disclosed are solid oxide fuel cells comprising: a substantially flat ceramic electrolyte sheet, a substantially flat ceramic electrolyte sheet having a seal area of greater thickness than the active area of the electrolyte sheet, a ceramic electrolyte sheet that overhangs the seal area, a ceramic electrolyte sheet and at least one substantially flat border material, and a border material having a non-linear edge. Methods of making a solid oxide fuel cell in accordance with the disclosed embodiments are also disclosed. Also disclosed are methods of making a solid oxide fuel cell wherein the seal has a uniform thickness, wherein the seal is heated to remove a volatile component prior to sealing, and wherein the distance between the frame and the ceramic electrolyte sheet of the device is constant.
    Type: Application
    Filed: December 5, 2007
    Publication date: July 10, 2008
    Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Steven F. Hoysan, Thomas Dale Ketcham, Scott Christopher Pollard, Dell Joseph St Julien, Sujanto Widjaja
  • Publication number: 20080120946
    Abstract: Methods and assemblies relate to bezel packaging of a sealed glass assembly, such as a frit-sealed OLED device. The bezel packaging includes a shock absorbent intermediate layer of low modulus of elasticity material applied between the sealed glass assembly and the bezel. A bonding agent, which may include the low modulus of elasticity material and/or a separate bonding material, affixes the sealed glass assembly to the bezel. Bezel modifications may be made to stabilize the bezel. Exemplary bezel modifications include reinforced bezel side walls and supporting straps attached between bezel walls. The bezel design may include a gap between the edges of the sealed glass assembly and the bezel walls, so as to avoid direct contact therewith. The gap may be filled at least in part with low modulus of elasticity organic adhesive to provide additional shock absorbency. The low modulus of elasticity material may include foam, ceramic fiber cloth and/or a low modulus of elasticity polymeric organic coating.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 29, 2008
    Inventors: John F. Bayne, Jamie T. Westbrook, Sujanto Widjaja
  • Publication number: 20080032178
    Abstract: A solid oxide fuel cell device comprises: an electrolyte sheet; at least one electrode pair sandwiching the electrolyte sheet; wherein the sealed area of said electrolyte sheet is elongated, has arcuate geometry and has a length to width aspect ratio of more than 1.0.
    Type: Application
    Filed: August 2, 2006
    Publication date: February 7, 2008
    Inventors: Phong Diep, Scott Christopher Pollard, Sujanto Widjaja
  • Patent number: 7279241
    Abstract: An electrolyte sheet comprises a substantially non-porous body and has at least one stress-relief area on at least a portion of the electrolyte sheet. The stress-relief area has a surface with a plurality of folds. The plurality of folds are arranged around and directed longitudinally toward a common central area.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: October 9, 2007
    Assignee: Corning Incorporated
    Inventors: Thomas Dale Ketcham, Dell Joseph St Julien, Sujanto Widjaja, Scott Christopher Pollard
  • Patent number: 7279213
    Abstract: Thin-walled ceramic honeycomb products of improved resistance to isostatic pressure damage are provided wherein the skin layers disposed over the cellular matrix portions of the honeycombs are formed of ceramic materials differing from the materials of the matrix as to composition, density, or other physical parameters effective to increase the elastic modulus of the skin layer relative to the cellular matrix and thereby reduce pressure-induced tangential strain in regions of the matrix adjacent to the skin layers.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: October 9, 2007
    Assignee: Corning Incorporated
    Inventors: Suresh T. Gulati, Sujanto Widjaja
  • Publication number: 20070072043
    Abstract: A stress reducing mounting for an electrolyte sheet assembly in a solid electrolyte fuel cell is provided that includes a support frame or manifold having an inner edge portion that supports a peripheral portion of the sheet assembly, a seal that affixes an edge of the peripheral portion to the frame or manifold, and a stress reducer disposed around the peripheral portion of the electrolyte sheet and the frame or manifold that reduces tensile stress in the peripheral portion of the electrolyte sheet when the peripheral portion is bent by pressure differentials or thermal differential expansion. The stress reducer is at least one of a convex curved surface on the inner edge portion of the frame or manifold that makes area contact with the peripheral portion when it bends in response to a pressure differential or thermal differential expansion, and a stiffening structure on the sheet peripheral portion that renders the ceramic sheet material forming the peripheral portion more resistant to bending.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 29, 2007
    Inventors: Michael Edward Badding, Jeffrey Earl Cortright, John David Helfinstine, Thomas Dale Ketcham, Scott Christopher Pollard, Irene Slater, Dell Joseph St Julien, Sujanto Widjaja
  • Publication number: 20070007894
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 11, 2007
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 7112050
    Abstract: A honeycomb substrate includes an inner body having an inner skin and an array of inner webs defining an array of inner cells within the inner skin. The honeycomb substrate further includes an outer body having an outer skin formed concentric with the inner skin and an array of outer webs defining an array of triangle cells between the inner skin and the outer skin. The triangle cells are oriented along a radial direction with respect to a center of the inner body. An extrusion assembly for forming the honeycomb substrate includes an inner cell forming die, an outer cell forming die, and a skin forming mask, all mounted coaxially. An outer skin slot formed between the outer cell forming die and the skin forming mask is in communication with feedholes in the inner cell forming die through an opening in the outer cell forming die.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: September 26, 2006
    Assignee: Corning Incorporated
    Inventors: James J. Bernas, Thomas W. Brew, Rodney I. Frost, Mark L. Humphrey, Weiguo Miao, Kenneth R. Miller, Yawei Sun, David R. Treacy, Jr., Sujanto Widjaja
  • Patent number: 6998776
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: February 14, 2006
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20060009109
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: September 16, 2005
    Publication date: January 12, 2006
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20060003213
    Abstract: An electrolyte sheet comprises a substantially non-porous body and has at least one stress-relief area on at least a portion of the electrolyte sheet. The stress-relief area has a surface with a plurality of folds. The plurality of folds are arranged around and directed longitudinally toward a common central area.
    Type: Application
    Filed: June 20, 2005
    Publication date: January 5, 2006
    Inventors: Thomas Ketcham, Dell St Julien, Sujanto Widjaja, Scott Pollard
  • Publication number: 20050199599
    Abstract: A method of sealing an OLED structure includes providing a top glass substrate and a bottom glass substrate, and at least one layer of organic material between the glass substrates. The illustrative method also includes focusing a relatively high power, a relatively short-duration laser radiation onto a region of one glass substrate, thereby heating a focal volume through multiphoton absorption. The intense heat causes the interface of the glass to swell and bond onto the other glass substrate. An apparatus for sealing the structure and a sealed package are also disclosed.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 15, 2005
    Inventors: Xinghua Li, Sujanto Widjaja
  • Publication number: 20050147791
    Abstract: Thin-walled ceramic honeycomb products of improved resistance to isostatic pressure damage are provided wherein the skin layers disposed over the cellular matrix portions of the honeycombs are formed of ceramic materials differing from the materials of the matrix as to composition, density, or other physical parameters effective to increase the elastic modulus of the skin layer relative to the cellular matrix and thereby reduce pressure-induced tangential strain in regions of the matrix adjacent to the skin layers.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 7, 2005
    Inventors: Suresh Gulati, Sujanto Widjaja
  • Publication number: 20050001545
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: April 13, 2004
    Publication date: January 6, 2005
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20040266619
    Abstract: A honeycomb substrate includes an inner body having an inner skin and an array of inner webs defining an array of inner cells within the inner skin. The honeycomb substrate further includes an outer body having an outer skin formed concentric with the inner skin and an array of outer webs defining an array of triangle cells between the inner skin and the outer skin. The triangle cells are oriented along a radial direction with respect to a center of the inner body. An extrusion assembly for forming the honeycomb substrate includes an inner cell forming die, an outer cell forming die, and a skin forming mask, all mounted coaxially. An outer skin slot formed between the outer cell forming die and the skin forming mask is in communication with feedholes in the inner cell forming die through an opening in the outer cell forming die.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: James J. Bernas, Thomas W. Brew, Rodney I. Frost, Mark L. Humphrey, Weiguo Miao, Kenneth R. Miller, Yawei Sun, David R. Treacy, Sujanto Widjaja
  • Publication number: 20040207314
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, Robert Morena, Joseph F. Schroeder, Alexander Streltsov, Sujanto Widjaja