Patents by Inventor Suman Cherian

Suman Cherian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160041114
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 9176089
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: November 3, 2015
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 9140683
    Abstract: A semiconductor die includes a chemical sensor, a digital to analog converter, and microcontroller formed therein. The chemical sensor detects the presence of a chemical and outputs an analog signal to the digital to analog converter. The analog to digital converter converts the analog signal to a digital signal. The analog to digital converter outputs the digital signal to the microcontroller. Microcontroller calculates a value of the concentration of the selected chemical.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: September 22, 2015
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Suman Cherian, Olivier Le Neel
  • Publication number: 20150253276
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung
  • Patent number: 9027400
    Abstract: A capacitive humidity sensor includes a first electrode, a humidity sensitive dielectric layer, and a second electrode. The humidity sensitive dielectric layer is between the first and the second electrodes. The humidity sensitive dielectric layer is etched at selected regions to form hollow regions between the first and second electrodes.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 12, 2015
    Assignees: STMicroelectronics Pte Ltd., STMicroelectronics Asia Pacific Pte Ltd., STMicroelectronics S.R.L.
    Inventors: Olivier Le Neel, Suman Cherian, Ravi Shankar, Boon Nam Poh, Sebastien Marsanne, Michele Vaiana
  • Publication number: 20150001075
    Abstract: A bio-fluid sensor is formed by depositing polyimide on a glass substrate. Gold and platinum are deposited on the polyimide and patterned to form fluid sensing electrodes, signal traces, and a temperature sensor. The fluid sensor is then fixed to a flexible tape and peeled off of the glass substrate.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung, Ravi Shankar, Tien Choy Loh, Shian Yeu Kam
  • Publication number: 20150001071
    Abstract: A bio-fluid test strip includes a fluid receiving area and a contact pad area for interfacing with a fluid sensing device. The test strip includes a fluid sensing electrodes and a first temperature sensing resistor in the fluid receiving area. The test strip further includes a second temperature sensing resistor in the contact pad area. The first and second temperature sensing resistors together provide an indication of the temperature difference between the fluid sensing area and ambience.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Olivier Le Neel, Suman Cherian
  • Patent number: 8860152
    Abstract: A integrated circuit die includes a chemical sensor, a thermal sensor, and a humidity sensor formed therein. The chemical sensor, thermal sensor, and humidity sensor include electrodes formed in a passivation layer of the integrated circuit die. The integrated circuit die further includes transistors formed in a monocrystaline semiconductor layer.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 14, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Suman Cherian, Olivier Le Neel
  • Publication number: 20140294046
    Abstract: Sensors for air flow, temperature, pressure, and humidity are integrated onto a single semiconductor die within a miniaturized Venturi chamber to provide a microelectronic semiconductor-based environmental multi-sensor module that includes an air flow meter. One or more such multi-sensor modules can be used as building blocks in dedicated application-specific integrated circuits (ASICs) for use in environmental control appliances that rely on measurements of air flow. Furthermore, the sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. By integrating the Venturi chamber with accompanying environmental sensors, correction factors can be obtained and applied to compensate for temporal humidity fluctuations and spatial temperature variation using the Venturi apparatus.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian
  • Publication number: 20140291677
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 8650953
    Abstract: A chemical sensor is provided on a first semiconductor die. A potentiostat is provided on a second semiconductor die. An analog to digital converter and a microcontroller are provided on a third semiconductor die. The first die is configured to be connected to the second die. The second die is configured to be connected to the third die. The chemical sensor detects a chemical in the surrounding environment and outputs a signal to the analog to digital converter. The analog to digital converter converts the signal to a digital signal and outputs the digital signal to the microcontroller. The microcontroller provides a measurement of the concentration of the chemical in the surrounding environment.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 18, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Suman Cherian, Olivier Le Neel
  • Publication number: 20130139587
    Abstract: A capacitive humidity sensor includes a first electrode, a humidity sensitive dielectric layer, and a second electrode. The humidity sensitive dielectric layer is between the first and the second electrodes. The humidity sensitive dielectric layer is etched at selected regions to form hollow regions between the first and second electrodes.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicants: STMicroelectronics Pte Ltd., STMicroelectronics S.r.I., STMicroelectronics Asia Pacific Pte Ltd.
    Inventors: Olivier Le Neel, Suman Cherian, Ravi Shankar, Boon Nam Poh, Sebastien Marsanne, Michele Vaiana
  • Publication number: 20130010826
    Abstract: Microsensors that include an integrated thermal energy source and an integrated temperature sensor are capable of providing localized heating and temperature control of individual sensing regions within the microsensor. Localized temperature control allows analyte detection to be carried out at the same temperatures or substantially the same temperatures at which the sensor is calibrated. By carrying out the sensing near the calibration temperature, more accurate results can be obtained. In addition, the temperature of the sensing region can be controlled so that chemical reactions involving the analyte in the sensing region occur near their peak reaction rate. Carrying out the sensing near the peak reaction rate improves the sensitivity of the sensor which is important as sensor dimensions decrease and the magnitude of the generated signals decreases.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 10, 2013
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Ravi Shankar
  • Publication number: 20120168882
    Abstract: A integrated circuit die includes a chemical sensor, a thermal sensor, and a humidity sensor formed therein. The chemical sensor, thermal sensor, and humidity sensor include electrodes formed in a passivation layer of the integrated circuit die. The integrated circuit die further includes transistors formed in a monocrystalline semiconductor layer.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 5, 2012
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Suman Cherian, Olivier Le Neel
  • Publication number: 20120167392
    Abstract: A razor has an electrochemical sensor for sensing various characteristics, such as biological, chemical, temperature, humidity, and pressure. The electrochemical sensor is positioned within a razor head of the razor, but may be attached to and enclosed in the razor head housing or attached to a razor blade of the razor. The electrochemical sensor may be positioned at different locations within the housing and on the razor blades. The electrochemical sensor may be positioned such that a sensing surface is exposed to a shaving surface of a patient. The razor may also have various electrical components for processing signals generated by the electrochemical sensor and determining the presence or concentration of a chemical or biological marker. The data associated with the signals may be displayed, transmitted to a separate computing device, or stored in a memory.
    Type: Application
    Filed: July 26, 2011
    Publication date: July 5, 2012
    Applicant: STMICROELECTRONICS PTE. LTD.
    Inventors: Suman Cherian, Olivier Le Neel
  • Publication number: 20120171713
    Abstract: A semiconductor die includes a chemical sensor, a digital to analog converter, and microcontroller formed therein. The chemical sensor detects the presence of a chemical and outputs an analog signal to the digital to analog converter. The analog to digital converter converts the analog signal to a digital signal. The analog to digital converter outputs the digital signal to the microcontroller. Microcontroller calculates a value of the concentration of the selected chemical.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 5, 2012
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Suman Cherian, Olivier Le Neel
  • Publication number: 20120171774
    Abstract: A chemical sensor is provided on a first semiconductor die. A potentiostat is provided on a second semiconductor die. An analog to digital converter and a microcontroller are provided on a third semiconductor die. The first die is configured to be connected to the second die. The second die is configured to be connected to the third die. The chemical sensor detects a chemical in the surrounding environment and outputs a signal to the analog to digital converter. The analog to digital converter converts the signal to a digital signal and outputs the digital signal to the microcontroller. The microcontroller provides a measurement of the concentration of the chemical in the surrounding environment.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 5, 2012
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Suman Cherian, Olivier Le Neel