Patents by Inventor Suman Datta

Suman Datta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8405164
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls is formed on an insulating substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and is formed adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body. A thin film is then formed adjacent to the semiconductor body wherein the thin film produces a stress in the semiconductor body.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: March 26, 2013
    Assignee: Intel Corporation
    Inventors: Scott A. Hareland, Robert S. Chau, Brian S. Doyle, Suman Datta, Been-Yih Jin
  • Patent number: 8390082
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 5, 2013
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Patent number: 8369134
    Abstract: Memory devices and methods of operation are provided. A memory device includes first and second cross-coupled inverters and first and second access transistors coupled to an input node of the second inverter. The memory device also includes a control circuit for providing a first reference voltage at a first ground node of the first inverter and a second reference voltage at a second ground node of the second inverter. The first access transistor is configured to conduct current from a first bit line to the input node and to provide substantially no current conduction from the input node to the first bit line. The second access transistor is configured to conduct current from the input node to one of the first bit line and a second bit line and to provide substantially no current conduction from the input node to the one of first and second bit lines.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 5, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Jawar Singh, Ramakrishnan Krishnan, Saurabh Mookerjea, Suman Datta, Vijaykrishnan Narayanan
  • Patent number: 8368135
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: February 5, 2013
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 8294180
    Abstract: Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: October 23, 2012
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Been-Yih Jin, Jack T. Kavalieros, Suman Datta, Justin K. Brask, Robert S. Chau
  • Patent number: 8288233
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods may include providing a gate electrode comprising a top surface and first and second laterally opposite sidewalls, wherein a hard mask is disposed on the top surface, a source drain region disposed on opposite sides of the gate electrode, and a spacer disposed on the first and second laterally opposed sidewalls of the gate electrode, forming a silicon germanium layer on exposed portions of the top surface and the first and second laterally opposite sidewalls of the source drain region and then oxidizing a portion of the silicon germanium layer, wherein a germanium portion of the silicon germanium layer is forced down into the source drain region to convert a silicon portion of the source drain region into a silicon germanium portion of the source drain region.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 16, 2012
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Brian Doyle, Jack Kavalieros, Suman Datta
  • Patent number: 8273626
    Abstract: A nonplanar semiconductor device and its method of fabrication is described. The nonplanar semiconductor device includes a semiconductor body having a top surface opposite a bottom surface formed above an insulating substrate wherein the semiconductor body has a pair laterally opposite sidewalls. A gate dielectric is formed on the top surface of the semiconductor body on the laterally opposite sidewalls of the semiconductor body and on at least a portion of the bottom surface of semiconductor body. A gate electrode is formed on the gate dielectric, on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of semiconductor body and beneath the gate dielectric on the bottom surface of the semiconductor body. A pair source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 25, 2012
    Assignee: Intel Corporationn
    Inventors: Scott A. Hareland, Robert S. Chau, Brian S. Doyle, Rafael Rios, Tom Linton, Suman Datta
  • Patent number: 8264004
    Abstract: A method of fabricating a quantum well device includes forming a diffusion barrier on sides of a delta layer of a quantum well to confine dopants to the quantum well.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 11, 2012
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Jack T. Kavalieros, Suman Datta, Amlan Majumdar, Robert S. Chau
  • Publication number: 20120205729
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20120199813
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8237234
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 7, 2012
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 8232588
    Abstract: Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: July 31, 2012
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Robert S. Chau, Vivek De, Suman Datta, Dinesh Somasekhar
  • Patent number: 8217383
    Abstract: The present disclosure provides an apparatus and method for implementing a high hole mobility p-channel Germanium (“Ge”) transistor structure on a Silicon (“Si”) substrate. One exemplary apparatus may include a buffer layer including a GaAs nucleation layer, a first GaAs buffer layer, and a second GaAs buffer layer. The exemplary apparatus may further include a bottom barrier on the second GaAs buffer layer and having a band gap greater than 1.1 eV, a Ge active channel layer on the bottom barrier and having a valence band offset relative to the bottom barrier that is greater than 0.3 eV, and an AlAs top barrier on the Ge active channel layer wherein the AlAs top barrier has a band gap greater than 1.1 eV. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 10, 2012
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Suman Datta, Jack T. Kavalieros, Peter G. Tolchinsky
  • Patent number: 8193567
    Abstract: A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: June 5, 2012
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Justin K. Brask, Brian S. Doyle, Uday Shah, Suman Datta, Mark L. Doczy, Matthew V. Metz, Robert S. Chau
  • Patent number: 8183646
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: May 22, 2012
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20120106236
    Abstract: Memory devices and methods of operation are provided. A memory device includes first and second cross-coupled inverters and first and second access transistors coupled to an input node of the second inverter. The memory device also includes a control circuit for providing a first reference voltage at a first ground node of the first inverter and a second reference voltage at a second ground node of the second inverter. The first access transistor is configured to conduct current from a first bit line to the input node and to provide substantially no current conduction from the input node to the first bit line. The second access transistor is configured to conduct current from the input node to one of the first bit line and a second bit line and to provide substantially no current conduction from the input node to the one of first and second bit lines.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Jawar Singh, Ramakrishnan Krishnan, Saurabh Mookerjea, Suman Datta, Vijaykrishnan Narayanan
  • Patent number: 8169027
    Abstract: A multi-gate transistor and a method of forming a multi-gate transistor, the multi-gate transistor including a fin having an upper portion and a lower portion. The upper portion having a first band gap and the lower portion having a second band gap with the first band gap and the second band gap designed to inhibit current flow from the upper portion to the lower portion. The multi-gate transistor further including a gate structure having sidewalls electrically coupled with said upper portion and said lower portion and a substrate positioned below the fin.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: May 1, 2012
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Been-Yih Jin, Jack T. Kavalieros, Suman Datta
  • Patent number: 8148786
    Abstract: A complementary metal oxide semiconductor integrated circuit may be formed with a PMOS device formed using a replacement metal gate and a raised source drain. The raised source drain may be formed of epitaxially deposited silicon germanium material that is doped p-type. The replacement metal gate process results in a metal gate electrode and may involve the removal of a nitride etch stop layer.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 3, 2012
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Annalisa Cappellani, Justin K. Brask, Mark L. Doczy, Matthew V. Metz, Suman Datta, Chris E. Barns, Robert S. Chau
  • Patent number: 8138042
    Abstract: A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 20, 2012
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Robert S. Chau, Suman Datta, Vivek De, Ali Keshavarzi, Dinesh Somasekhar
  • Publication number: 20120061649
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Application
    Filed: June 15, 2011
    Publication date: March 15, 2012
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin