Patents by Inventor SUMIT GANGWAL

SUMIT GANGWAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973169
    Abstract: An optical isolation material may be applied to walls of a first cavity and a second cavity in a wafer mesh. A wavelength converting layer may be deposited into the first cavity to create a first segment and into the second cavity to create a second segment. The first segment may be attached to a first light emitting device to create a first pixel and the second segment to a second light emitting device to create a second pixel. The wafer mesh may be removed.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 30, 2024
    Assignee: Lumileds LLC
    Inventors: Danielle Russell Chamberlin, Erik Maria Roeling, Sumit Gangwal, Niek Van Leth, Oleg Shchekin
  • Patent number: 11335835
    Abstract: An optical isolation material may be applied to walls of a first cavity and a second cavity in a wafer mesh. A wavelength converting layer may be deposited into the first cavity to create a first segment and into the second cavity to create a second segment. The first segment may be attached to a first light emitting device to create a first pixel and the second segment to a second light emitting device to create a second pixel. The wafer mesh may be removed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: May 17, 2022
    Assignee: Lumileds LLC
    Inventors: Danielle Russell Chamberlin, Erik Maria Roeling, Sumit Gangwal, Niek Van Leth, Oleg Borisovich Shchekin
  • Patent number: 11233180
    Abstract: A light emitting diode (LED) device may include an LED die having a first surface on a substrate. A first phosphor layer may be formed on a second surface and sides of the LED die. The second surface may be opposite the first surface. A second phosphor layer may be formed on the first phosphor layer. The second phosphor layer may have a peak emission wavelength (Lpk2) located between a peak emission wavelength of the LED die (LpkD) and a peak emission wavelength of the first phosphor layer (Lpk2).
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 25, 2022
    Assignee: LUMILEDS LLC
    Inventors: Hans-Helmut Bechtel, Gregoire Denis, Erik Maria Roeling, Danielle Russell Chamberlin, Sumit Gangwal
  • Publication number: 20200403128
    Abstract: An optical isolation material may be applied to walls of a first cavity and a second cavity in a wafer mesh. A wavelength converting layer may be deposited into the first cavity to create a first segment and into the second cavity to create a second segment. The first segment may be attached to a first light emitting device to create a first pixel and the second segment to a second light emitting device to create a second pixel. The wafer mesh may be removed.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Applicant: LUMILEDS LLC
    Inventors: Danielle Russell CHAMBERLIN, Erik Maria ROELING, Sumit GANGWAL, Niek VAN LETH, Oleg SHCHEKIN
  • Publication number: 20200075815
    Abstract: A light emitting diode (LED) device may include an LED die having a first surface on a substrate. A first phosphor layer may be formed on a second surface and sides of the LED die. The second surface may be opposite the first surface. A second phosphor layer may be formed on the first phosphor layer. The second phosphor layer may have a peak emission wavelength (Lpk2) located between a peak emission wavelength of the LED die (LpkD) and a peak emission wavelength of the first phosphor layer (Lpk2).
    Type: Application
    Filed: August 31, 2018
    Publication date: March 5, 2020
    Applicant: Lumileds LLC
    Inventors: Hans-Helmut Bechtel, Gregoire Denis, Erik Maria Roeling, Danielle Russell Chamberlin, Sumit Gangwal
  • Publication number: 20190189684
    Abstract: An optical isolation material may be applied to walls of a first cavity and a second cavity in a wafer mesh. A wavelength converting layer may be deposited into the first cavity to create a first segment and into the second cavity to create a second segment. The first segment may be attached to a first light emitting device to create a first pixel and the second segment to a second light emitting device to create a second pixel. The wafer mesh may be removed.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 20, 2019
    Applicant: Lumileds LLC
    Inventors: Danielle Russell CHAMBERLIN, Erik Maria ROELING, Sumit GANGWAL, Niek VAN LETH, Oleg SHCHEKIN
  • Publication number: 20160002484
    Abstract: The invention relates to improved hydrophobicity and water protection of a fibrous fabric substrate (cotton, synthetics and/or their blends) by depositing a thin nanofiber layer and coating with a dispersion of fluoropolymers (fluorinated acrylic co-polymers) that are alternative perfluorinated chemicals (PFCs) based on short-chain chemistry of varying chain length (C4, C6, C8, C10, C12, C14, etc.) perfluoroalkyl constituents.
    Type: Application
    Filed: January 24, 2014
    Publication date: January 7, 2016
    Applicant: Xanofi, Inc.
    Inventors: Peter GEISEN, Sumit GANGWAL, Miles C. WRIGHT
  • Patent number: 9217211
    Abstract: Nanofibers are fabricated in a continuous process by introducing a polymer solution into a dispersion medium, which flows through a conduit and shears the dispersion medium. Liquid strands, streaks or droplets of the polymer solution are continuously shear-spun into elongated fibers. An inorganic precursor may be introduced with the polymer solution, resulting in fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 22, 2015
    Assignee: North Carolina State University
    Inventors: Orlin D. Velev, Stoyan Smoukov, Peter Geisen, Miles C. Wright, Sumit Gangwal
  • Publication number: 20150354139
    Abstract: Substrates with wet laid staple polymeric nanofibers of short lengths are disclosed. The polymeric nanofibers can be surface coated on a non-woven or woven substrates, wet laid with other fiber types to create a nonwoven substrate or wet laid onto themselves to form a nanofiber-only mat.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 10, 2015
    Applicant: Xanofi, Inc.
    Inventors: Peter GEISEN, Sumit GANGWAL, Miles C. WRIGHT
  • Publication number: 20130012598
    Abstract: Nanofibers are fabricated in a continuous process by introducing a polymer solution into a dispersion medium, which flows through a conduit and shears the dispersion medium. Liquid strands, streaks or droplets of the polymer solution are continuously shear-spun into elongated fibers. An inorganic precursor may be introduced with the polymer solution, resulting in fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
    Type: Application
    Filed: May 16, 2012
    Publication date: January 10, 2013
    Inventors: ORLIN D. VELEV, STOYAN SMOUKOV, PETER GEISEN, MILES C. WRIGHT, SUMIT GANGWAL