Patents by Inventor Sumit Garg

Sumit Garg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10993135
    Abstract: Systems and methods are disclosed for assigning a quality of service to a data packet in a communications network by mapping a Wi-Fi access layer identifier such as an SSID to a value in a datagram header, and subsequently using the datagram header to assign an appropriate data bearer for the datagram, the data bearer having a quality of service class identifier appropriate for the type of traffic expected to be sent over the particular Wi-Fi access layer.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 27, 2021
    Assignee: Parallel Wireless, Inc.
    Inventors: Yang Cao, Sumit Garg, Anand Bhaskarwar, Steven Beaudette, Mohit Chugh
  • Patent number: 10972934
    Abstract: A method for utilizing quality of service information in a network with tunneled backhaul is disclosed, comprising: establishing a backhaul bearer at a base station with a first core network, the backhaul bearer established by a backhaul user equipment (UE) at the base station, the backhaul bearer having a single priority parameter, the backhaul bearer terminating at a first packet data network gateway in the first core network; establishing an encrypted internet protocol (IP) tunnel between the base station and a coordinating gateway in communication with the first core network and a second core network; facilitating, for at least one UE attached at the base station, establishment of a plurality of UE data bearers encapsulated in the secure IP tunnel, each with their own QCI; and transmitting prioritized data of the plurality of UE data bearers via the backhaul bearer and the coordinating gateway to the second core network.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: April 6, 2021
    Assignee: Parallel Wireless, Inc.
    Inventors: Pratik Vinod Mehta, Yang Cao, Sumit Garg, Kaitki Agarwal, Rajesh Kumar Mishra
  • Publication number: 20210084538
    Abstract: Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Inventors: Steven Paul Papa, Rajesh Kumar Mishra, Kaitki Agarwal, Sridhar Donepudi, Sumit Garg, Kartik Shashikant Raval, Prashanth Rao
  • Patent number: 10938621
    Abstract: A method is disclosed for out-of-band data communication with a base station in a wireless network, the method comprising: determining, at a base station in a cellular access network, the base station configured to use a coordination server and to a first core network for providing network access to user equipments (UEs), an occurrence of an event regarding a communication problem related to the base station; sending an out-of-band message, via an embedded UE module coupled to the base station attached to a second core network, to the coordination server, based on the occurrence of the event at the base station; updating, at the coordination server, a stored status for the base station, thereby enabling a status of the base station to be updated at the coordination server via an out-of-band message.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: March 2, 2021
    Assignee: Parallel Wireless, Inc.
    Inventors: Rajesh Kumar Mishra, Randy Rutherford, Sumit Garg, Jitender Arora, Babak Jafarian, Christopher Simmonds
  • Publication number: 20210044926
    Abstract: Systems and methods for an in-vehicle base station are described. In one embodiment, a mobile base station is disclosed comprising a first access radio for providing an access network inside and outside a vehicle; a second backhaul radio for providing a backhaul connection to a macro cell; and a global positioning system (GPS) module for determining a location of the mobile base station, and for transmitting the location of the mobile base station to a core network, wherein a transmit power of the first access radio is configured to increase or decrease based on a speed of the vehicle.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Murali Talluri, Kaitki Agarwal, Rajesh Kumar Mishra, Sumit Garg
  • Publication number: 20210007155
    Abstract: Methods and computer software are disclosed for establishing mesh connectivity. In one embodiment the method includes advertising, by a first Converged Wireless System (CWS) the presence of a mesh; detecting, by a second CWS, the presence of the mesh being advertised by a first CWS; performing, by the second CWS, secure certificate based authentication with the first CWS; and allocating, by the second CWS, an Internet Protocol (IP) address over the mesh and using the IP address as a logical address in an IP domain.
    Type: Application
    Filed: July 6, 2020
    Publication date: January 7, 2021
    Inventors: Sumit Garg, Gaurav Kumar
  • Publication number: 20200374831
    Abstract: Systems and methods are disclosed for providing a radio operation switch based on mobility data. In one embodiment, a mobile base station is disclosed, comprising: a global positioning system (GPS) module for determining a current location of the mobile base station; a velocity module coupled to the output of the GPS module for determining a current velocity of the mobile base station; and a controller, the controller configured to perform steps comprising: determining the current velocity of the mobile base station using the velocity module; comparing the current velocity to a threshold; and switching, based on the comparison, from a first radio band to a second radio band.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventor: Sumit Garg
  • Patent number: 10849019
    Abstract: Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: November 24, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Steven Paul Papa, Rajesh Kumar Mishra, Kaitki Agarwal, Sridhar Donepudi, Sumit Garg, Kartik Shashikant Raval, Prashanth Rao
  • Publication number: 20200351209
    Abstract: A system is disclosed, comprising: a centralized routing node configured to: identify a set of congested links based on the link utilization statistics, each congested link having at least one traffic flow that may be active, each traffic flow having at least one traffic source and a path set comprising a set of nodes and links that may be used by the traffic flow as packets travel from the at least one traffic source to one or more destinations; identify a set of non-congested links based on the link utilization statistics, each non-congested link sharing at least one traffic source with a traffic flow of a congested link in the set of congested links; identify a path fork in a path set between a source and a destination of a particular traffic flow associated with a particular congested link in the set of congested links; and compute a new utilization level for the particular congested link that would result from moving the particular traffic flow from the particular congested link to a particular non-conge
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventor: Sumit Garg
  • Patent number: 10820150
    Abstract: Systems and methods for an in-vehicle base station are described. In one embodiment, a mobile base station is disclosed comprising a first access radio for providing an access network inside and outside a vehicle; a second backhaul radio for providing a backhaul connection to a macro cell; and a global positioning system (GPS) module for determining a location of the mobile base station, and for transmitting the location of the mobile base station to a core network, wherein a transmit power of the first access radio is configured to increase or decrease based on a speed of the vehicle.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: October 27, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Murali Talluri, Kaitki Agarwal, Rajesh Kumar Mishra, Sumit Garg
  • Publication number: 20200287787
    Abstract: A wireless configuration network may be provided by a Wi-Fi hotspot active at the wireless access station. The Wi-Fi otspot may be connected to by a wireless network-capable device, such as a tablet computer, e.g., an Apple iPad, or a Wi-Fi enabled smartphone, e.g., an Android or Apple iOS device. This allows a technician to stand on the ground below the wireless access station but still have access to various configuration features of the wireless access station. The wireless configuration network may also be referred to herein as a “debug SSID” or a “debug access point.
    Type: Application
    Filed: April 28, 2020
    Publication date: September 10, 2020
    Inventors: Sumit Garg, Steven Beaudette, Rajesh Kumar Mishra, Kaitki Agarwal
  • Publication number: 20200280864
    Abstract: This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor determines if a user equipment (UE) should hand over its service from a base station to a multi-radio access technology (RAT) node, based on heuristics including one or more of: a distance traveled over a time T1, an average speed over a time T2, a destination stored in internal memory within the UE, a speed limit measurement for a nearby road, a possible direction in which the UE could travel, a signal strength measurement for a servicing base station, and a signal strength measurement for the multi-RAT node. A position profile may be used to predict a future location of the UE.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Kaitki Agarwal, Rajesh Kumar Mishra, Sridhar Donepudi, Steven Paul Papa, Murali Talluri, Sumit Garg, Pradeep Kumar Dakshayani Raghavan
  • Publication number: 20200275283
    Abstract: A centrally controlled dynamic frequency selection (DFS) mechanism is defined that uses a historical analytical database to define DFS hop patterns, which allows for a better probability of picking a non-interfering channel but also meets the performance requirements of the mesh and satisfying the timing constraints of DFS. A method for performing dynamic frequency selection (DFS) is disclosed, comprising: receiving, at a gateway, measurement reports from a radio access node regarding observed utilization of a 5 GHz radio frequency band shared with a plurality of radio access nodes; determining, based on the received measurement reports, a frequency hop pattern at the gateway; and sending the frequency hop pattern from the gateway to each of the plurality of radio access nodes, thereby enabling compliance with DFS regulations using a centralized gateway.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 27, 2020
    Inventors: Sumit Garg, Steven Beaudette
  • Publication number: 20200274796
    Abstract: A method is disclosed, comprising: receiving a first and a second Internet Protocol (IP) packet at a mesh network node; tagging the first and the second IP packet at the mesh network node based on a type of traffic by adding an IP options header to each of the first and the second IP packet; forwarding the first and the second IP packet toward a mesh gateway node; filtering the first and the second IP packet at the mesh gateway node based on the added IP options header by assigning each of the first and the second IP packet to one of a plurality of message queues, each of the plurality of message queues having a limited forwarding throughput; and forwarding the first and the second IP packet from the mesh gateway node toward a mobile operator core network, thereby providing packet flow filtering based on IP header and traffic type.
    Type: Application
    Filed: April 7, 2020
    Publication date: August 27, 2020
    Inventors: Sumit Garg, Gaurav Kumar
  • Patent number: 10743283
    Abstract: Systems and methods are disclosed for providing a radio operation switch based on mobility data. In one embodiment, a mobile base station is disclosed, comprising: a global positioning system (GPS) module for determining a current location of the mobile base station; a velocity module coupled to the output of the GPS module for determining a current velocity of the mobile base station; and a controller, the controller configured to perform steps comprising: determining the current velocity of the mobile base station using the velocity module; comparing the current velocity to a threshold; and switching, based on the comparison, from a first radio band to a second radio band.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: August 11, 2020
    Assignee: Parallel Wireless, Inc.
    Inventor: Sumit Garg
  • Publication number: 20200196183
    Abstract: A method for utilizing quality of service information in a network with tunneled backhaul is disclosed, comprising: establishing a backhaul bearer at a base station with a first core network, the backhaul bearer established by a backhaul user equipment (UE) at the base station, the backhaul bearer having a single priority parameter, the backhaul bearer terminating at a first packet data network gateway in the first core network; establishing an encrypted internet protocol (IP) tunnel between the base station and a coordinating gateway in communication with the first core network and a second core network; facilitating, for at least one UE attached at the base station, establishment of a plurality of UE data bearers encapsulated in the secure IP tunnel, each with their own QCI; and transmitting prioritized data of the plurality of UE data bearers via the backhaul bearer and the coordinating gateway to the second core network.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: Pratik Vinod Mehta, Yang Cao, Sumit Garg, Kaitki Agarwal, Rajesh Kumar Mishra
  • Publication number: 20200187025
    Abstract: This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor determines if a user equipment (UE) should hand over its service from a base station to a multi-radio access technology (RAT) node, based on heuristics including one or more of: a distance traveled over a time T1, an average speed over a time T2, a destination stored in internal memory within the UE, a speed limit measurement for a nearby road, a possible direction in which the UE could travel, a signal strength measurement for a servicing base station, and a signal strength measurement for the multi-RAT node. A position profile may be used to predict a future location of the UE.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 11, 2020
    Inventors: Kaitki Agarwal, Rajesh Kumar Mishra, Sridhar Donepudi, Steven Paul Papa, Murali Talluri, Sumit Garg
  • Publication number: 20200187303
    Abstract: We disclose systems and methods of dynamically virtualizing a wireless communication network. The communication network is comprised of heterogeneous multi-RAT mesh nodes coupled to a computing cloud component. The computing cloud component virtualizes the true extent of the resources it manages and presents an interface to the core network that appears to be a single base station.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 11, 2020
    Inventors: Sridhar Donepudi, Sumit Garg, Kaitki Agarwal, Rajesh Kumar Mishra, Steven Paul Papa
  • Patent number: 10674422
    Abstract: A network node for facilitating data transfer is disclosed, comprising: a routing module configured to receive network link capacity information; a first radio interference operating on a first radio access technology and coupled to the routing module; and a second radio interface operating on a second radio access technology and coupled to the routing module, wherein the routing module is configured to receive packets directed to a third virtual radio interface and route the packets to one or both of the first and the second radio interfaces to provide throughput at the third virtual radio interface that is greater than throughput available via either the first or the second radio interfaces independently.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Yang Cao, Sumit Garg
  • Patent number: 10638325
    Abstract: A centrally controlled dynamic frequency selection (DFS) mechanism is defined that uses a historical analytical database to define DFS hop patterns, which allows for a better probability of picking a non-interfering channel but also meets the performance requirements of the mesh and satisfying the timing constraints of DFS. A method for performing dynamic frequency selection (DFS) is disclosed, comprising: receiving, at a gateway, measurement reports from a radio access node regarding observed utilization of a 5 GHz radio frequency band shared with a plurality of radio access nodes; determining, based on the received measurement reports, a frequency hop pattern at the gateway; and sending the frequency hop pattern from the gateway to each of the plurality of radio access nodes, thereby enabling compliance with DFS regulations using a centralized gateway.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: April 28, 2020
    Assignee: Parallel Wireless, Inc.
    Inventors: Sumit Garg, Steven Beaudette