Patents by Inventor Sumitha Nair

Sumitha Nair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140311925
    Abstract: An in vitro sensor point-of-care sensor including a substrate, a sensing system, and a reference system. The substrate can include a first cavity and a second cavity. The sensing system can be disposed within the first cavity and include an optode membrane, a selectively-permeable membrane, and a plurality of microbeads. The optode membrane can be sensitive to an analyte in the biological fluid. The selectively-permeable membrane can cover an opening of the first cavity. The plurality of microbeads can be associated with at least one of the optode membrane and the selectively-permeable membrane. The reference system can be disposed within the second cavity.
    Type: Application
    Filed: May 23, 2014
    Publication date: October 23, 2014
    Applicant: Case Western Reserve University
    Inventors: Maria Peshkova, Armand Krikorian, Sumitha Nair, Punkaj Ahuja, Miklos Gratzl
  • Patent number: 8790591
    Abstract: An in vitro sensor for point-of-care detection of at least one analyte or reaction product includes an inert, impermeable substrate, a sensing system, and a reference system. The substrate includes a first transparent surface oppositely disposed from a second surface and first and second cavities. Each of the first and second cavities defines an opening at the second surface. The sensing system is disposed in at least a portion of the first cavity and includes an analyte-detection optode membrane, an analyte-permeable membrane, and a plurality of non-transparent microbeads associated with at least one of the analyte-detection optode membrane and the analyte-permeable membrane. The analyte-permeable membrane is layered upon the analyte-detection optode membrane and covers the opening of the first cavity. The reference system is disposed in at least a portion of the second cavity.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 29, 2014
    Assignee: Case Western Reserve University
    Inventors: Maria Peshkova, Armand Krikorian, Sumitha Nair, Punkaj Ahuja, Miklos Gratzl
  • Publication number: 20130109040
    Abstract: An in vitro sensor for point-of-care detection of at least one analyte or reaction product includes an inert, impermeable substrate, a sensing system, and a reference system. The substrate includes a first transparent surface oppositely disposed from a second surface and first and second cavities. Each of the first and second cavities defines an opening at the second surface. The sensing system is disposed in at least a portion of the first cavity and includes an analyte-detection optode membrane, an analyte-permeable membrane, and a plurality of non-transparent microbeads associated with at least one of the analyte-detection optode membrane and the analyte-permeable membrane. The analyte-permeable membrane is layered upon the analyte-detection optode membrane and covers the opening of the first cavity. The reference system is disposed in at least a portion of the second cavity.
    Type: Application
    Filed: July 11, 2011
    Publication date: May 2, 2013
    Applicant: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Maria Peshkova, Armand Krikorian, Sumitha Nair, Punkaj Ahuja, Miklos Gratzl
  • Patent number: 6859767
    Abstract: A method for solving deconvolution problems where it is desired to reconstruct a signal over a time range or another variable of interest involves comparing shapes of measured and reconstructed plots. The optimization method is based on minimizing the error in shape (as opposed to the square errors in amplitude). A shape approach method characterizes similarity of two functions by computing the angle between the two when they are treated as two vectors in the n dimensional space where n is the number of data points it is desired to consider from both functions (the functions themselves may consist of more than n data points). A new approximation is then created by trying to decrease the disimilarity between the actual and predicted functions. This dissimilarity is measured as the angle between the two corresponding vectors, so the measure of dissimilarity is the size of the angle.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: February 22, 2005
    Assignee: Case Western Reserve University
    Inventors: Miklos Gratzl, Sumitha Nair
  • Publication number: 20040102933
    Abstract: A method for solving deconvolution problems where it is desired to reconstruct a signal over a time range or another variable of interest involves comparing shapes of measured and reconstructed plots. The optimization method is based on minimizing the error in shape (as opposed to the square errors in amplitude). A shape approach method characterizes similarity of two functions by computing the angle between the two when they are treated as two vectors in the n dimensional space where n is the number of data points it is desired to consider from both functions (the functions themselves may consist of more than n data points). A new approximation is then created by trying to decrease the disimilarity between the actual and predicted functions. This dissimilarity is measured as the angle between the two corresponding vectors, so the measure of dissimilarity is the size of the angle.
    Type: Application
    Filed: October 8, 2003
    Publication date: May 27, 2004
    Inventors: Miklos Gratzl, Sumitha Nair