Patents by Inventor Sumithra Krishnaswami

Sumithra Krishnaswami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7679223
    Abstract: An electronic circuit includes a primary wide bandgap bipolar power switching device configured to supply a load current in response to a control signal applied to a control terminal thereof, and a driver device configured to generate the control signal. At least one of the primary switching device or the driver device may include an optically triggered switching device. A discrete wide bandgap semiconductor device includes a primary bipolar device stage configured to switch between a conducting state and a nonconducting state upon application of a control current, and a bipolar driver stage configured to generate the control current and to supply the control current to the primary bipolar device stage. At least one of the primary bipolar device stage and the bipolar driver stage may include an optically triggered wide bandgap switching device.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 16, 2010
    Assignee: Cree, Inc.
    Inventors: Anant K. Agarwal, Sumithra Krishnaswami, James T. Richmond, Jr.
  • Patent number: 7345310
    Abstract: A bipolar junction transistor (BJT) includes a silicon carbide (SiC) collector layer of first conductivity type, an epitaxial silicon carbide base layer of second conductivity type on the silicon carbide collector layer, and an epitaxial silicon carbide emitter mesa of the first conductivity type on the epitaxial silicon carbide base layer. An epitaxial silicon carbide passivation layer of the first conductivity type is provided on at least a portion of the epitaxial silicon carbide base layer outside the silicon carbide emitter mesa. The epitaxial silicon carbide passivation layer can be configured to fully deplete at zero device bias. Related fabrication methods also are disclosed.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 18, 2008
    Assignee: Cree, Inc.
    Inventors: Anant K. Agarwal, Sumithra Krishnaswami, Sei-Hyung Ryu, D. Craig Capell
  • Patent number: 7304334
    Abstract: Bipolar junction transistors (BJTs) are provided including silicon carbide (SiC) substrates. An epitaxial SiC base region is provided on the SiC substrate. The epitaxial SiC base region has a first conductivity type. An epitaxial SiC emitter region is also provided on the SiC substrate. The epitaxial SiC emitter region has a second conductivity type, different from the first conductivity type. The epitaxial SiC emitter region has first and second portions. The first portion is provided on the SiC substrate and the second portion is provided on the first portion. The second portion has a higher carrier concentration than the first portion. Related methods of fabricating BJTs are also provided herein.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: December 4, 2007
    Assignee: Cree, Inc.
    Inventors: Anant K. Agarwal, Sumithra Krishnaswami, Sei-Hyung Ryu, Edward Harold Hurt
  • Publication number: 20070235757
    Abstract: Bipolar junction transistors (BJTs) are provided including silicon carbide (SiC) substrates. An epitaxial SiC base region is provided on the SiC substrate. The epitaxial SiC base region has a first conductivity type. An epitaxial SiC emitter region is also provided on the SiC substrate. The epitaxial SiC emitter region has a second conductivity type, different from the first conductivity type. The epitaxial SiC emitter region has first and second portions. The first portion is provided on the SiC substrate and the second portion is provided on the first portion. The second portion has a higher carrier concentration than the first portion. Related methods of fabricating BJTs are also provided herein.
    Type: Application
    Filed: September 16, 2005
    Publication date: October 11, 2007
    Inventors: Anant Agarwal, Sumithra Krishnaswami, Sei-Hyung Ryu, Edward Hurt
  • Publication number: 20070145378
    Abstract: A bipolar junction transistor (BJT) includes a silicon carbide (SiC) collector layer of first conductivity type, an epitaxial silicon carbide base layer of second conductivity type on the silicon carbide collector layer, and an epitaxial silicon carbide emitter mesa of the first conductivity type on the epitaxial silicon carbide base layer. An epitaxial silicon carbide passivation layer of the first conductivity type is provided on at least a portion of the epitaxial silicon carbide base layer outside the silicon carbide emitter mesa. The epitaxial silicon carbide passivation layer can be configured to fully deplete at zero device bias. Related fabrication methods also are disclosed.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Anant Agarwal, Sumithra Krishnaswami, Sei-Hyung Ryu, D. Capell
  • Publication number: 20060261876
    Abstract: An electronic circuit includes a primary wide bandgap bipolar power switching device configured to supply a load current in response to a control signal applied to a control terminal thereof, and a driver device configured to generate the control signal. At least one of the primary switching device or the driver device may include an optically triggered switching device. A discrete wide bandgap semiconductor device includes a primary bipolar device stage configured to switch between a conducting state and a nonconducting state upon application of a control current, and a bipolar driver stage configured to generate the control current and to supply the control current to the primary bipolar device stage. At least one of the primary bipolar device stage and the bipolar driver stage may include an optically triggered wide bandgap switching device.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 23, 2006
    Inventors: Anant Agarwal, Sumithra Krishnaswami, James Richmond