Patents by Inventor Sung Don Lim

Sung Don Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11053512
    Abstract: Disclosed herein are methods of altering tissue succulence in plants. In some examples, a disclosed method includes overexpressing a modified helix-loop-helix transcription factor CEB1 in a plant cell, thereby altering plant succulence. The disclosed methods can be used to improve the drought and salinity tolerance of plants, such as in plants in arid or saline environments, and also enhance the ability of plants to perform. Also disclosed are CEB1 nucleic acids and transgenic plants containing such nucleic acids.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 6, 2021
    Assignee: BOARD OF REGENTS OF THE NEVADA SYSTEM OF HIGHER EDUCATION, ON BEHALF OF THE UNIVERSITY OF NEVADA, RENO
    Inventors: John C. Cushman, Sung Don Lim
  • Publication number: 20210062214
    Abstract: Disclosed herein are methods of altering CAM pathways in plants. In some examples, a disclosed method includes overexpressing one or more genes encoding one or more enzymes that carry out the basic biochemical sequence of nocturnal CO2 fixation (carboxylation) into C4 acids (malate), store C4 acids in the vacuole of the plant, and/or then decarboxylate and refix the released CO2 by C3 photosynthesis during the subsequent day in a plant cell, thereby altering CAM in the plant cell. Also disclosed herein are isolated polynucleotide sequences, transformation vectors, transgenic plant cells, plant part, and plants. The disclosed methods and compositions can be used to improve the water-use efficiency and drought tolerance and durability of plants, such as in plants in arid environments, and also enhance the ability of plants to perform net CO2 fixation resulting in increased biomass production and accumulation.
    Type: Application
    Filed: October 29, 2020
    Publication date: March 4, 2021
    Inventors: John C. Cushman, Sung Don Lim, Won Cheol Yim
  • Patent number: 10858404
    Abstract: Disclosed herein are method of altering CAM pathways in plants. In some examples, a disclosed method includes overexpressing one or more genes encoding one or more enzymes that carry out the basic biochemical sequence of nocturnal CO2 fixation (carboxylation) into C4 acids (malate), store C4 acids in the vacuole of the plant, and/or then decarboxylate and refix the released CO2 by C3 photosynthesis during the subsequent day in a plant cell, thereby altering CAM in the plant cell. Also disclosed herein are isolated polynucleotide sequences, transformation vectors, transgenic plant cells, plant part, and plants. The disclosed methods and compositions can be used to improve the water-use efficiency and drought tolerance and durability of plants, such as in plants in arid environments, and also enhance the ability of plants to perform.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: December 8, 2020
    Assignee: BOARD OF REGENTS OF THE NEVADA SYSTEM OF HIGHER EDUCATION ON BEHALF OF THE UNIVERSITY OF NEVADA, RENO
    Inventors: John C. Cushman, Sung Don Lim, Won Cheol Yim
  • Publication number: 20190093122
    Abstract: Disclosed herein are method of altering CAM pathways in plants. In some examples, a disclosed method includes overexpressing one or more genes encoding one or more enzymes that carry out the basic biochemical sequence of nocturnal CO2 fixation (carboxylation) into C4 acids (malate), store C4 acids in the vacuole of the plant, and/or then decarboxylate and refix the released CO2 by C3 photosynthesis during the subsequent day in a plant cell, thereby altering CAM in the plant cell. Also disclosed herein are isolated polynucleotide sequences, transformation vectors, transgenic plant cells, plant part, and plants. The disclosed methods and compositions can be used to improve the water-use efficiency and drought tolerance and durability of plants, such as in plants in arid environments, and also enhance the ability of plants to perform.
    Type: Application
    Filed: July 3, 2018
    Publication date: March 28, 2019
    Applicant: BOARD OF REGENTS OF NEVADA SYSTEM OF HIGHER EDUCATION, ON BEHALF OF UNIVERSITY
    Inventors: John C. Cushman, Sung Don Lim, Won Cheol Yim
  • Publication number: 20180327772
    Abstract: Disclosed herein are methods of altering tissue succulence in plants. In some examples, a disclosed method includes overexpressing a modified helix-loop-helix transcription factor CEB1 in a plant cell, thereby altering plant succulence. The disclosed methods can be used to improve the drought and salinity tolerance of plants, such as in plants in arid or saline environments, and also enhance the ability of plants to perform. Also disclosed are CEB1 nucleic acids and transgenic plants containing such nucleic acids.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Applicant: BOARD OF REGENTS OF THE NEVADA SYSTEM OF HIGHER EDUCATION ON BEHALF OF THE UNIVERSITY OF NEVADA,
    Inventors: John C. Cushman, Sung Don Lim