Patents by Inventor Sung P. Pack

Sung P. Pack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6204597
    Abstract: A field emission device (110, 210, 310, 410) includes an electron emitter (124), a first dielectric focusing layer (122) defining a first aperture (127), and a second dielectric focusing layer (123) defining a second aperture (133). Second dielectric focusing layer (123) is disposed on first dielectric focusing layer (122). The dielectric constant of second dielectric focusing layer (123) is less than the dielectric constant of first dielectric focusing layer (122). During the operation of field emission device (110, 210, 310), electron emitter (124) emits an electron beam (134), which is focused as it travels through first aperture (127) and then through second aperture (133).
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: March 20, 2001
    Assignee: Motorola, Inc.
    Inventors: Chenggang Xie, John Song, Sung P. Pack
  • Patent number: 6091190
    Abstract: An electron emitter (121, 221, 321, 421) includes an electron emitter structure (118) having a passivation layer (120, 220, 320, 420) formed thereon. The passivation layer (120, 220, 320, 420) is made from an oxide selected from a group consisting of the oxides of Ba, Ca, Sr, In, Sc, Ti, Ir, Co, Sr, Y, Zr, Ru, Pd, Sn, Lu, Hf, Re, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Th, and combinations thereof. In the preferred embodiment, the electron emitter structure (118) is made from molybdenum, and the passivation layer (120, 220, 320, 420) is made from an emission-enhancing oxide having a work function that is less than the work function of the molybdenum.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: July 18, 2000
    Assignee: Motorola, Inc.
    Inventors: Babu R. Chalamala, Sung P. Pack, Charles A. Rowell
  • Patent number: 6033924
    Abstract: A method for fabricating a field emission device (200) includes the steps of forming on the surface of a substrate (110) a cathode (112), forming on the cathode (112) a dielectric layer (114), forming an emitter well (115) in the dielectric layer (114), forming within the emitter well (115) an electron emitter structure (118) having a surface (123), forming on a portion of the dielectric layer (114) a gate electrode (116), depositing on the dielectric layer (114) a sacrificial layer (210), thereafter depositing on the surface (123) of the electron emitter structure (118) a coating material (220, 320, 420) that has an emission-enhancing material, and then removing the sacrificial layer (210).
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: March 7, 2000
    Assignee: Motorola, Inc.
    Inventors: Sung P. Pack, Babu R. Chalamala
  • Patent number: 5956568
    Abstract: A method of fabricating ultra-small semiconductor devices including providing a mesa on a substrate. A plurality of overlying layers of semiconductor material are grown in overlying relationship to the mesa so that a perpendicular discontinuity is produced in the layers at the mesa sidewall and the first layer overlying the mesa is in contact with the last layer overlying the substrate adjacent the mesa. A spacer of nonconductive material is formed on the discontinuity and the plurality of overlying layers are etched, using the spacer as a mask, so as to form a contact area overlying the mesa and a contact area overlying the substrate adjacent the mesa, and a semiconductor device positioned adjacent the sidewall beneath the spacer and between the contact areas.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: September 21, 1999
    Assignee: Motorola, Inc.
    Inventors: Kumar Shiralagi, Sung P. Pack
  • Patent number: 5929560
    Abstract: A field emission display (100) includes a dielectric layer (132) having a plurality of emitter wells (134), a plurality of electron emitters (136) disposed one each within the plurality of emitter wells (134), a plurality of conductive rows (138, 140, 142) disposed on the dielectric layer (132) and having sacrificial portions (154), an ion shield (139) disposed on the dielectric layer (132) and spaced apart from the sacrificial portions (154) of the plurality of conductive rows (138, 140, 142), and an anode (121) opposing the plurality of electron emitters (136) and defining a projected area (122) at the plurality of conductive rows (138, 140, 142). The sacrificial portions (154) of the plurality of conductive rows (138, 140, 142) extend beyond the projected area (122) of the anode (121).
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: July 27, 1999
    Assignee: Motorola, Inc.
    Inventors: Johann Trujillo, Chenggang Xie, Sung P. Pack, Rodolfo Lucero, Carl R. Hagen, Lawrence N. Dworsky
  • Patent number: 5921838
    Abstract: A method for protecting extraction electrodes (140) during processing of Spindt-tip field emitters (150, 155) includes the steps of: (i) depositing a parting layer (170) on the extraction electrodes (140) and in an interspace region (145) defined by the extraction electrodes (140), (ii) sharpening the Spindt-tip field emitters (150), (iii) depositing a layer (180) of emission-enhancing material on the sharpened field emitters (155) and on the parting layer (170), and (iv) removing the parting layer (170), thereby lifting off the emission-enhancing material from the extraction electrodes (140) and from the interspace region (145), but not from the sharpened field emitters (155).
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: July 13, 1999
    Assignee: Motorola, Inc.
    Inventors: Sung P. Pack, Patricia A. Norton, Robert F. Woodburn, Jr.
  • Patent number: 5831383
    Abstract: A field emission device (100, 200) includes an anode (190); a substrate (110); a plurality of spaced apart cathodes (120); a dielectric layer (124) disposed on the cathodes (120); a plurality of spacer pads (130, 230) disposed on the substrate (110) between adjacent cathodes (120) and including a spacer contact layer (142, 185) that defines the surfaces of the spacer pads (130, 230); a spacer (150) having a first edge (157), a second edge (155), and a conductive layer (152) disposed on the second edge (155), the first edge (157) contacting the anode (190), the conductive layer (152) contacting the spacer contact layer (142, 185) at the spacer pads (130, 230); and an electron emitter (170) disposed within the dielectric layer (124) and spaced apart from the second edge (155) of the spacer (150).
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: November 3, 1998
    Assignee: Motorola Inc.
    Inventors: Sung P. Pack, Rodolfo Lucero, Chenggang Xie, Johann Trujillo, Rob Rumbaugh
  • Patent number: 5796122
    Abstract: A method of planarizing wide bandgap semiconductor devices selected from a group including SiC, GaN and diamond having a mesa defined thereon by a trench with a depth of 1 to 2 micrometers and a width of 2 to 10 micrometers. A layer of dielectric material is deposited on the substrate overlying and surrounding the mesa, to a height approximately equal to the height of the mesa and the dielectric material is etched from atop the mesa and from a surrounding area. Layers of spin on glass are deposited to fill the surrounding area and etched to achieve a planar surface including the mesa and the layer of dielectric material.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: August 18, 1998
    Assignee: Motorola, Inc.
    Inventors: Charles E. Weitzel, Edward L. Fisk, Sung P. Pack
  • Patent number: 5698928
    Abstract: An array of thin film piezoelectric resonators are formed on a substrate and connected in parallel to form a single piezoelectric resonator with enhanced piezoelectric coupling. The array includes a first conductive layer positioned on the substrate and defining a first electrode, a plurality of columns of piezoelectric material positioned on the conductive layer and each defining a separate piezoelectric resonator, and a second conductive layer positioned on the plurality of columns and defining a second electrode. The columns are selectively deposited or deposited as a single layer and etched into columns.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: December 16, 1997
    Assignee: Motorola, Inc.
    Inventors: Luke Mang, Sung P. Pack, Dean Barker
  • Patent number: 5677230
    Abstract: A method of planarizing wide bandgap semiconductor devices selected from a group including SiC, GaN and diamond having a mesa defined thereon by a trench with a depth of 1 to 2 micrometers and a width of 2 to 10 micrometers. A layer of dielectric material is deposited on the substrate overlying and surrounding the mesa, to a height approximately equal to the height of the mesa and the dielectric material is etched from atop the mesa and from a surrounding area. Layers of spin on glass are deposited to fill the surrounding area and etched to achieve a planar surface including the mesa and the layer of dielectric material.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: October 14, 1997
    Assignee: Motorola
    Inventors: Charles E. Weitzel, Edward L. Fisk, Sung P. Pack
  • Patent number: 5599738
    Abstract: A process of fabricating submicron features including depositing a gate metal layer on a substrate and forming a first etchable layer of material on the metal layer to define a first sidewall. A second etchable layer is deposited on the structure so as to define a second sidewall. The second etchable layer is etched so as to leave only the second sidewall and the first etchable layer is removed. The metal layer is etched using the second sidewall as an etch mask to form a submicron feature. The width of the feature depends upon the thickness of the metal layer.
    Type: Grant
    Filed: December 11, 1995
    Date of Patent: February 4, 1997
    Assignee: Motorola
    Inventors: Majid M. Hashemi, Saied N. Tehrani, Sung P. Pack