Patents by Inventor Sunil G. Warrier

Sunil G. Warrier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9401524
    Abstract: A fuel cell stack formed of repeating cell units is provided wherein each cell unit includes a fuel cell having an anode side and a cathode side; an anode side frame; a cathode side frame; a bipolar plate having an anode side interconnect adjacent to the anode side frame and a cathode side interconnect adjacent to a cathode side frame of an adjacent cell unit; a cathode side seal between the fuel cell and the cathode side frame; and an anode side seal between the fuel cell and the anode side frame, wherein at least one of the anode side interconnect, cathode side interconnect, anode side seal and cathode side seal are compliant.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: July 26, 2016
    Assignee: Ballard Power Systems Inc.
    Inventors: Sunil G. Warrier, Jean Yamanis, James R. Maus, Benoit Olsommer
  • Patent number: 8835074
    Abstract: A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: September 16, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Justin R. Hawkes, Sergei F. Burlatsky, Sunil G. Warrier, Shubhro Ghosh, Jean Colpin
  • Publication number: 20130101915
    Abstract: A seal is provided for use in a solid oxide fuel cell, wherein the seal is formed of alternating adjacent layers of a fiber tow material and a foil material. A solid oxide fuel cell stack is also disclosed and is formed of repeating cell units, each cell unit having a plurality of fuel cell stack components defining opposed component surfaces, and the seal as described above positioned between the opposed component surfaces. A process is also provided for manufacturing a composite seal for a solid oxide fuel cell, and the process including the steps of: (a) feeding a quantity of spooled fiber tow material through an inert bonding agent to form a coated fiber tow material; (b) winding the coated fiber tow material about a mandrel to form a wound layer of fiber tow material; (c) feeding a quantity of spooled foil material about the wound layer of fiber tow material to form a wound layer of foil material; and (d) repeating steps (a) through (c) until forming a composite seal having desired thickness and width.
    Type: Application
    Filed: June 25, 2010
    Publication date: April 25, 2013
    Applicant: UTC POWER CORPORATION
    Inventors: Jean Yamanis, Sunil G. Warrier, Sarah Arsenault-Preece, Justin R. Hawkes
  • Patent number: 8167191
    Abstract: A multi-layer seal arrangement includes a dissolution barrier between a braze alloy and a ceramic component. The inventive seal is useful for joining a ceramic component to another ceramic component or a metal component, for example. In one example, the braze comprises a gold alloy and the dissolution barrier comprises a layer of alumina on the order of 2-3 microns thick. A titanium wetting layer is provided between the alumina layer and the alloy. A metallization layer provided between the dissolution barrier and the ceramic component in one example comprises a layer of gold between two thin layers of titanium. In one particular example, a platinum mesh is included with the gold of the braze alloy to control braze flow during the brazing operation.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 1, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Sunil G. Warrier, Richard S. Bailey, Willard H. Sutton
  • Publication number: 20110275006
    Abstract: A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.
    Type: Application
    Filed: January 22, 2009
    Publication date: November 10, 2011
    Inventors: Justin R. Hawkes, Sergei F. Burlatsky, Sunil G. Warrier, Shubhro Ghosh, Jean Colpin
  • Publication number: 20110248073
    Abstract: A multi-layer seal arrangement includes a dissolution barrier between a braze alloy and a ceramic component. The inventive seal is useful for joining a ceramic component to another ceramic component or a metal component, for example. In one example, the braze comprises a gold alloy and the dissolution barrier comprises a layer of alumina on the order of 2-3 microns thick. A titanium wetting layer is provided between the alumina layer and the alloy. A metallization layer provided between the dissolution barrier and the ceramic component in one example comprises a layer of gold between two thin layers of titanium. In one particular example, a platinum mesh is included with the gold of the braze alloy to control braze flow during the brazing operation.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 13, 2011
    Inventors: Sunil G. Warrier, Richard S. Bailey, Willard H. Sutton
  • Patent number: 7989086
    Abstract: A multi-layer seal arrangement includes a dissolution barrier between a braze alloy and a ceramic component. The inventive seal is useful for joining a ceramic component to another ceramic component or a metal component, for example. In one example, the braze comprises a gold alloy and the dissolution barrier comprises a layer of alumina on the order of 2-3 microns thick. A titanium wetting layer is provided between the alumina layer and the alloy. A metallization layer provided between the dissolution barrier and the ceramic component in one example comprises a layer of gold between two thin layers of titanium. In one particular example, a platinum mesh is included with the gold of the braze alloy to control braze flow during the brazing operation.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: August 2, 2011
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Sunil G. Warrier, Richard S. Bailey, Willard H. Sutton
  • Patent number: 7977004
    Abstract: A seal assembly for a solid oxide fuel cell stack, includes at least two fuel cell stack components having opposed surfaces and a seal member disposed between the surfaces, wherein the seal member is a compliant seal member that is mechanically compliant in both in-plane and out-of-plane directions relative to the surfaces. The seal member is advantageously formed of one or more substantially continuous fibers. Further, preferred materials for the seal member are provided which advantageously allow for a desired level of impermeability while preventing contamination of the fuel cell stack.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: July 12, 2011
    Assignee: UTC Fuel Cells, LLC.
    Inventors: Sunil G. Warrier, Jean Yamanis, Sonia Tulyani, Raymond C. Benn
  • Publication number: 20100129731
    Abstract: An interconnect assembly for a solid oxide fuel cell includes a porous interconnect comprising a plurality of first wires of a first material and at least one second material combined to form a first portion defining a separator plate contact zone and a second portion defining an electrode contact zone. Various wire weave shapes and pre-buckled architectures are shown such as FIG. 7 shows a substantially trapezoidal shaped cross-section where the cathode-side interconnect (30) comprises first wires (37).
    Type: Application
    Filed: December 28, 2006
    Publication date: May 27, 2010
    Applicant: UTC POWER CORPORATION
    Inventors: Sunil G. Warrier, Jean Yamanis
  • Patent number: 7344793
    Abstract: An electrode assembly for solid oxide fuel cells includes an electrolyte member defining a cathode side and an anode side and having an active area and an edge portion; cathode disposed on the cathode side; an anode disposed on the anode side; and at least one electrolyte support member positioned adjacent to the edge portion of the electrolyte and having an opening positioned over at least a portion of the active area.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 18, 2008
    Assignee: UTC Power Corporation
    Inventors: Sunil G. Warrier, Jai-woh Kim, Raymond Benn, Shihong Song, Venkata Vedula, Richard Bailey
  • Patent number: 7144649
    Abstract: A fuel cell stack includes a plurality of fuel cells each having an anode layer, an electrolyte layer, and a cathode layer, the fuel cells each having a first effective thermal expansion coefficient; a plurality of bipolar plates positioned between adjacent fuel cells having an anode interconnect, a separator plate, and a cathode interconnect, the bipolar plates being positioned between adjacent fuel cells, wherein the anode interconnect is in electrical communication with the anode layer of one adjacent fuel cell, wherein the cathode interconnect is in electrical communication with the cathode layer of another adjacent fuel cell, and wherein at least one interconnect of the cathode interconnect and the anode interconnect has a second thermal expansion coefficient and is adapted to reduce strain between the at least one interconnect and an adjacent fuel cell due to differences between the first and second thermal expansion coefficients over repeated thermal cycles.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: December 5, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventors: Jean Yamanis, Sunil G. Warrier, Venkata R. Vedula, Raymond C. Benn, John G. Smeggil, Shihong G. Song, Wayde R. Schmidt
  • Publication number: 20040200187
    Abstract: An interconnect for a solid oxide fuel cell includes a compliant superstructure having a first portion defining a separator plate contact zone and a second portion defining an electrode contact zone, wherein the super structure is porous. In one embodiment, the superstructure is defined by a plurality of compliant substructures provided in a first direction and a plurality of compliant substructures provided in second direction to define a woven structure.
    Type: Application
    Filed: January 16, 2004
    Publication date: October 14, 2004
    Inventors: Sunil G. Warrier, Jean Yamanis, Wayde B. Schmidr, Raymond C. Benn, John G. Smeggil, Shihong G. Song, Venkata R. Vedula
  • Publication number: 20040151968
    Abstract: A seal assembly for a solid oxide fuel cell stack, includes at least two fuel cell stack components having opposed surfaces and a seal member disposed between the surfaces, wherein the seal member is a compliant seal member that is mechanically compliant in both in-plane and out-of-plane directions relative to the surfaces. The seal member is advantageously formed of one or more substantially continuous fibers. Further, preferred materials for the seal member are provided which advantageously allow for a desired level of impermeability while preventing contamination of the fuel cell stack.
    Type: Application
    Filed: July 18, 2003
    Publication date: August 5, 2004
    Inventors: Sunil G. Warrier, Jean Yamanis, Sonia Tulyani, Raymond C. Benn
  • Publication number: 20040101733
    Abstract: A fuel cell stack includes a plurality of fuel cells each having an anode layer, an electrolyte layer, and a cathode layer, the fuel cells each having a first effective thermal expansion coefficient; a plurality of bipolar plates positioned between adjacent fuel cells having an anode interconnect, a separator plate, and a cathode interconnect, the bipolar plates being positioned between adjacent fuel cells, wherein the anode interconnect is in electrical communication with the anode layer of one adjacent fuel cell, wherein the cathode interconnect is in electrical communication with the cathode layer of another adjacent fuel cell, and wherein at least one interconnect of the cathode interconnect and the anode interconnect has a second thermal expansion coefficient and is adapted to reduce strain between the at least one interconnect and an adjacent fuel cell due to differences between the first and second thermal expansion coefficients over repeated thermal cycles.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: Jean Yamanis, Sunil G. Warrier, Venkata R. Vedula, Raymond C. Benn, John G. Smeggil, Shihong G. Song, Wayde R. Schmidt
  • Patent number: 5697421
    Abstract: The present invention provides a method for infrared pressureless infiltration of composites, including infiltration of carbon fibers and silicon carbide fibers with aluminum and titanium matrices. Composites produced by the methods of the present invention are also included within the scope of this invention.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: December 16, 1997
    Assignee: University of Cincinnati
    Inventors: Ray Y. Lin, Sunil G. Warrier
  • Patent number: 5681617
    Abstract: The present invention provides a method for application of metal coatings, specifically copper and silver, to continuous ceramic fibers, by electroless deposition. The method comprises the steps of: winding the uncoated ceramic fibers over a frame so that the fibers are coiled adjacent to each other; introducing the wound ceramic fibers into a solution of metal with which the fibers are to be coated; circulating the solution through said fibers; and contacting and causing the metal to be deposited on the wound fibers. Coated continuous ceramic fibers produced by the method of the present invention are also included within the scope of this invention.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: October 28, 1997
    Assignee: University of Cincinnati
    Inventors: Ray Y. Lin, Sunil G. Warrier