Patents by Inventor Sunil Krishna Sainis

Sunil Krishna Sainis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934593
    Abstract: A magneto-electrophoretic medium that can be globally and locally addressed and erased. The medium provides a writeable display with no perceivable lag and the ability to write and erase with only minimal power requirements. In particular, the magneto-electrophoretic medium can be erased by providing a subthreshold electric stimulus and supplementing a second non-electric stimulus that disturbs the written state and allows the magneto-electrophoretic particles to return to their original state.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: March 19, 2024
    Assignee: E Ink Corporation
    Inventors: Crystal Nguyen, Evan Griffith, Seth J. Bishop, Stephen J. Telfer, Kosta Ladavac, Andrew A. Drabek, Sunil Krishna Sainis, Richard J. Paolini, Jr., Samantha Morrill
  • Publication number: 20240019753
    Abstract: Systems and methods are disclosed for pressure-sensitive, electrophoretic displays, which may optionally include haptic feedback. A display may comprise a first conductive layer having a pressure-sensitive conductivity and an electrophoretic layer positioned adjacent to the first conductive layer, wherein the electrophoretic layer is in electrical communication with the first conductive layer and is configured to locally change state based on a pressure applied to the first conductive layer. Local and global writing and erasing of the display can also be achieved.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Sunil Krishna SAINIS, Seth J. BISHOP, Kosta LADAVAC, Stephen J. TELFER, Richard J. PAOLINI, JR.
  • Patent number: 11809057
    Abstract: Systems and methods are disclosed for pressure-sensitive, electrophoretic displays, which may optionally include haptic feedback. A display may comprise a first conductive layer having a pressure-sensitive conductivity and an electrophoretic layer positioned adjacent to the first conductive layer, wherein the electrophoretic layer is in electrical communication with the first conductive layer and is configured to locally change state based on a pressure applied to the first conductive layer. Local and global writing and erasing of the display can also be achieved.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 7, 2023
    Assignee: E Ink Corporation
    Inventors: Sunil Krishna Sainis, Seth J. Bishop, Kosta Ladavac, Stephen J. Telfer, Richard J. Paolini, Jr.
  • Publication number: 20230350264
    Abstract: An electro-optic display comprising at least two separate layers of electro-optic material, with one of these layers being capable of displaying at least one optical state which cannot be displayed by the other layer. The display is driven by a single set of electrodes between which both layers are sandwiched, the two layers being controllable at least partially independently of one another. Another form of the invention uses three different types of particles within a single electrophoretic layer, with the three types of particles being arranged to shutter independently of one another.
    Type: Application
    Filed: June 29, 2023
    Publication date: November 2, 2023
    Inventors: Stephen J. TELFER, Richard J. PAOLINI, JR., Sunil Krishna SAINIS, Randal M. HILL, Isaac W. MORAN, Lee YEZEK, Alain BOUCHARD, William VETTERLING, George G. HARRIS, Hywel MORGAN, Luke SLOMINSKI, Jay William ANSETH, Jennifer M. MORRISON, Craig A. HERB
  • Publication number: 20230326419
    Abstract: Continuous waveforms for driving a four-particle electrophoretic medium including four different types of particles, for example a set of scattering particles and three sets of subtractive particles. Methods for identifying a preferred waveform for a target color state or a target transition when using a continuous or quasi-continuous voltage driver/controller.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 12, 2023
    Inventors: Amit DELIWALA, Sunil Krishna SAINIS
  • Patent number: 11733580
    Abstract: An electro-optic display comprising at least two separate layers of electro-optic material, with one of these layers being capable of displaying at least one optical state which cannot be displayed by the other layer. The display is driven by a single set of electrodes between which both layers are sandwiched, the two layers being controllable at least partially independently of one another. Another form of the invention uses three different types of particles within a single electrophoretic layer, with the three types of particles being arranged to shutter independently of one another.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: August 22, 2023
    Assignee: E Ink Corporation
    Inventors: Stephen J. Telfer, Richard J. Paolini, Jr., Sunil Krishna Sainis, Randal M. Hill, Isaac W. Moran, Lee Yezek, Alain Bouchard, William Vetterling, George G. Harris, Hywel Morgan, Luke Slominski, Jay William Anseth, Jennifer M. Morrison, Craig A. Herb
  • Publication number: 20230205329
    Abstract: A magneto-electrophoretic medium that can be globally and locally addressed and erased. The medium provides a writeable display with no perceivable lag and the ability to write and erase with only minimal power requirements. In particular, the magneto-electrophoretic medium can be erased by providing a subthreshold electric stimulus and supplementing a second non-electric stimulus that disturbs the written state and allows the magneto-electrophoretic particles to return to their original state.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 29, 2023
    Inventors: Crystal NGUYEN, Evan GRIFFITH, Seth J. BISHOP, Stephen J. TELFER, Kosta LADAVAC, Andrew A. DRABEK, Sunil Krishna SAINIS, Richard J. PAOLINI, JR., Samantha MORRILL
  • Publication number: 20230152659
    Abstract: A variable light transmission device has at least one layer of electrophoretic medium comprising charged particles. Application of a an electric field having a waveform formed by a superposition of a carrier and a modulator waveform enables the switching of the device from a closed state to an open state, wherein the open state has higher light transmission than the closed state. As a result, the device enables the selection of the desired optical state by the user.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 18, 2023
    Inventors: Kosta LADAVAC, Richard J. PAOLINI, Jr., Stephen J. TELFER, Lee YEZEK, Sunil Krishna SAINIS, Peter Carsten Bailey WIDGER
  • Publication number: 20230104517
    Abstract: A system for rendering color images on an electro-optic display when the electro-optic display has a color gamut with a limited palette of primary colors, and/or the gamut is poorly structured (i.e., not a spheroid or obloid). The system uses an iterative process to identify the best color for a given pixel from a palette that is modified to diffuse the color error over the entire electro-optic display. The system additionally accounts for variations in color that are caused by cross-talk between nearby pixels.
    Type: Application
    Filed: November 3, 2022
    Publication date: April 6, 2023
    Inventors: Kenneth R. CROUNSE, Stephen J. TELFER, Edward BUCKLEY, Sunil Krishna SAINIS
  • Patent number: 11614809
    Abstract: A magneto-electrophoretic medium that can be globally and locally addressed and erased. The medium provides a writeable display with no perceivable lag and the ability to write and erase with only minimal power requirements. In particular, the magneto-electrophoretic medium can be erased by providing a subthreshold electric stimulus and supplementing a second non-electric stimulus that disturbs the written state and allows the magneto-electrophoretic particles to return to their original state.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: March 28, 2023
    Assignee: E Ink Corporation
    Inventors: Crystal Nguyen, Evan Griffith, Seth J. Bishop, Stephen J. Telfer, Kosta Ladavac, Andrew A. Drabek, Sunil Krishna Sainis, Richard J. Paolini, Jr., Samantha Morrill
  • Publication number: 20230072611
    Abstract: A color electrophoretic display with distinct switching areas formed by a segmented top plane electrode opposite driving pixel electrodes. The distinct areas are programmed to switch at different times, thereby reducing the “flashiness” seen by a viewer during an image update. In one embodiment, the color electrophoretic medium of the display includes a reflective white particle and three other sets of particles, each comprising a different subtractive color.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 9, 2023
    Inventors: Stephen J. TELFER, Richard J. PAOLINI, JR., Karl Raymond AMUNDSON, Kenneth R. CROUNSE, Alain BOUCHARD, Sunil Krishna SAINIS
  • Patent number: 11579510
    Abstract: A variable light transmission device has at least one layer of electrophoretic medium comprising charged particles. Application of a an electric field having a waveform formed by a superposition of a carrier and a modulator waveform enables the switching of the device from a closed state to an open state, wherein the open state has higher light transmission than the closed state. As a result, the device enables the selection of the desired optical state by the user.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: February 14, 2023
    Assignee: E Ink Corporation
    Inventors: Kosta Ladavac, Richard J. Paolini, Jr., Stephen J. Telfer, Lee Yezek, Sunil Krishna Sainis, Peter Carsten Bailey Widger
  • Patent number: 11560997
    Abstract: A hybrid reflective-emissive display including an electrophoretic medium. The electrophoretic medium includes two types of oppositely-charged, and differently-colored, particles in a fluid. The electrophoretic medium is disposed between a front light-transmissive electrode and a rear electrode including a plurality of apertures, such as a hexagonal grid. The electrophoretic layer is optionally illuminated by a light source disposed on the opposite side of the rear electrode from the electrophoretic medium. A viewer can see either the first or second type of particle at the viewing surface, or one of the particles can be illuminated by the light source, thus emitting light the color of one of the particles.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: January 24, 2023
    Assignee: E Ink Corporation
    Inventors: Sunil Krishna Sainis, Benjamin Harris Paletsky, Richard J. Paolini, Jr., Giovanni Mancini
  • Publication number: 20220364705
    Abstract: A hybrid reflective-emissive display including an electrophoretic medium. The electrophoretic medium includes two types of oppositely-charged, and differently-colored, particles in a fluid. The electrophoretic medium is disposed between a front light-transmissive electrode and a rear electrode including a plurality of apertures, such as a hexagonal grid. The electrophoretic layer is optionally illuminated by a light source disposed on the opposite side of the rear electrode from the electrophoretic medium. A viewer can see either the first or second type of particle at the viewing surface, or one of the particles can be illuminated by the light source, thus emitting light the color of one of the particles.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Sunil Krishna SAINIS, Benjamin Harris Paletsky, Richard J. PAOLINI, Jr., Giovanni MANCINI
  • Patent number: 11460165
    Abstract: A display device (30) comprises a reflective display (38) arranged to render a first image viewable through a viewing surface and a projection means (31-37) arranged to render a second image viewable in reflection on the viewing surface, the reflective display (38) and the projection means (31-37) being mounted on a common frame.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 4, 2022
    Assignee: E Ink Corporation
    Inventors: Richard J. Paolini, Jr., Benjamin Harris Paletsky, Sunil Krishna Sainis, Colleen Shea
  • Publication number: 20220262323
    Abstract: Continuous waveforms for driving a four-particle electrophoretic medium including four different types of particles, for example a set of scattering particles and three sets of subtractive particles. Methods for identifying a preferred waveform for a target color state or a target transition when using a continuous or quasi-continuous voltage driver/controller.
    Type: Application
    Filed: February 7, 2022
    Publication date: August 18, 2022
    Inventors: Amit DELIWALA, Sunil Krishna SAINIS
  • Patent number: 11398204
    Abstract: An electro-optic display comprising, in order: a light-transmissive layer of conductive material; a layer of bistable electro-optic medium; a layer of light-shielding material; a plurality of pixel electrodes; a layer of photoconductive material; and one or more light emitters. In one exemplary embodiment, the layer of photoconductive material is adapted to bridge a gap between an address line and at least one of the pixel electrodes when the photoconductive material is in a low impedance state. In another, non-exclusive embodiment, the electro-optic display further comprises a second electrode layer between the layer of photoconductive material and the one or more light emitters and a driver adapted to apply voltage between the light-transmissive layer of conductive material and the second electrode layer.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: July 26, 2022
    Assignee: E Ink Corporation
    Inventors: Sunil Krishna Sainis, Teck Ping Sim, Richard J. Paolini, Jr., Stephen J. Telfer
  • Publication number: 20220100292
    Abstract: A magneto-electrophoretic medium that can be globally and locally addressed and erased. The medium provides a writeable display with no perceivable lag and the ability to write and erase with only minimal power requirements. In particular, the magneto-electrophoretic medium can be erased by providing a subthreshold electric stimulus and supplementing a second non-electric stimulus that disturbs the written state and allows the magneto-electrophoretic particles to return to their original state.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 31, 2022
    Inventors: Crystal NGUYEN, Evan GRIFFITH, Seth J. BISHOP, Stephen J. TELFER, Kosta LADAVAC, Andrew A. DRABEK, Sunil Krishna SAINIS, Richard J. PAOLINI, JR., Samantha MORRILL
  • Publication number: 20220066277
    Abstract: Systems and methods are disclosed for pressure-sensitive, electrophoretic displays, which may optionally include haptic feedback. A display may comprise a first conductive layer having a pressure-sensitive conductivity and an electrophoretic layer positioned adjacent to the first conductive layer, wherein the electrophoretic layer is in electrical communication with the first conductive layer and is configured to locally change state based on a pressure applied to the first conductive layer. Local and global writing and erasing of the display can also be achieved.
    Type: Application
    Filed: October 13, 2021
    Publication date: March 3, 2022
    Inventors: Sunil Krishna SAINIS, Seth J. BISHOP, Kosta LADAVAC, Stephen J. TELFER, Richard J. PAOLINI, JR.
  • Publication number: 20220019119
    Abstract: An electrophoretic medium includes a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 20, 2022
    Inventors: Stephen J. TELFER, Richard J. PAOLINI, JR., Karl Raymond AMUNDSON, Kenneth R. CROUNSE, Alain BOUCHARD, Sunil Krishna SAINIS