Patents by Inventor Supriyo Bandyopadhyay

Supriyo Bandyopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220165468
    Abstract: Embodiments generally relate to subwavelength antennas and, more particularly, extreme subwavelength antennas with high radiation efficiency. One embodiment and its derivatives achieve the objective of an extreme subwavelength dual acoustic and electromagnetic antenna by using spin-orbit torque in an array of nanomagnets.
    Type: Application
    Filed: March 20, 2020
    Publication date: May 26, 2022
    Inventor: Supriyo BANDYOPADHYAY
  • Patent number: 9379162
    Abstract: Memory cells, non-volatile logic gates, and combinations thereof have magneto-tunneling junctions (MTJs) which are switched using potential differences across a piezoelectric layer in elastic contact with a magnetostrictive nanomagnet of an MTJ. One or more pairs of electrodes are arranged about the MTJ for supplying voltage across the piezoelectric layer for switching. A permanent magnetic field may be employed to change the positions of the stable magnetic orientations of the magnetostrictive nanomagnet. Exemplary memory cells and universal non-volatile logic gates show dramatically improved performance characteristics, particularly with respect to energy dissipation and error-resilience, over existing methods and architectures for switching MTJs such as spin transfer torque (STT) techniques.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: June 28, 2016
    Assignee: Virginia Commonwealth University
    Inventors: Supriyo Bandyopadhyay, Jayasimha Atulasimha, Ayan Kumar Biswas
  • Publication number: 20160141333
    Abstract: Memory cells, non-volatile logic gates, and combinations thereof have magneto-tunneling junctions (MTJs) which are switched using potential differences across a piezoelectric layer in elastic contact with a magnetostrictive nanomagnet of an MTJ. One or more pairs of electrodes are arranged about the MTJ for supplying voltage across the piezoelectric layer for switching. A permanent magnetic field may be employed to change the positions of the stable magnetic orientations of the magnetostrictive nanomagnet. Exemplary memory cells and universal non-volatile logic gates show dramatically improved performance characteristics, particularly with respect to energy dissipation and error-resilience, over existing methods and architectures for switching MTJs such as spin transfer torque (STT) techniques.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Supriyo Bandyopadhyay, Jayasimha Atulasimha, Ayan Kumar Biswas
  • Patent number: 8946678
    Abstract: Room temperature IR and UV photodetectors are provided by electrochemical self-assembly of nanowires. The detectivity of such IR detectors is up to ten times better than the state of the art. Broad peaks are observed in the room temperature absorption spectra of 10-nm diameter nanowires of CdSe and ZnS at photon energies close to the bandgap energy, indicating that the detectors are frequency selective and preferably detect light of specific frequencies. Provided is a photodetector comprising: an aluminum substrate; a layer of insulator disposed on the aluminum substrate and comprising an array of columnar pores; a plurality of semiconductor nanowires disposed within the pores and standing vertically relative to the aluminum substrate; a layer of nickel disposed in operable communication with one or more of the semiconductor nanowires; and wire leads in operable communication with the aluminum substrate and the layer of nickel for connection with an electrical circuit.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 3, 2015
    Assignee: Virginia Commonwealth University
    Inventors: Supriyo Bandyopadhyay, Saumil Bandyopadhyay, Pratik Agnihotri
  • Patent number: 8921962
    Abstract: A magnetostrictive-piezoelectric multiferroic single- or multi-domain nanomagnet whose magnetization can be rotated through application of an electric field across the piezoelectric layer has a structure that can include either a shape-anisotropic mangnetostrictive nanomagnet with no magnetocrystalline anisotropy or a circular nanomagnet with biaxial magnetocrystalline anisotropy with dimensions of nominal diameter and thickness. This structure can be used to write and store binary bits encoded in the magnetization orientation, thereby functioning as a memory element, or perform both Boolean and non-Boolean computation, or be integrated with existing magnetic tunneling junction (MTJ) technology to perform a read operation by adding a barrier layer for the MTJ having a high coercivity to serve as the hard magnetic layer of the MTJ, and electrical contact layers of a soft material with small Young's modulus.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 30, 2014
    Assignee: Virginia Commonwealth University
    Inventors: Jayasimha Atulasimha, Supriyo Bandyopadhyay
  • Publication number: 20130240837
    Abstract: Room temperature IR and UV photodetectors are provided by electrochemical self-assembly of nanowires. The detectivity of such IR detectors is up to ten times better than the state of the art. Broad peaks are observed in the room temperature absorption spectra of 10-nm diameter nanowires of CdSe and ZnS at photon energies close to the bandgap energy, indicating that the detectors are frequency selective and preferably detect light of specific frequencies. Provided is a photodetector comprising: an aluminum substrate; a layer of insulator disposed on the aluminum substrate and comprising an array of columnar pores; a plurality of semiconductor nanowires disposed within the pores and standing vertically relative to the aluminum substrate; a layer of nickel disposed in operable communication with one or more of the semiconductor nanowires; and wire leads in operable communication with the aluminum substrate and the layer of nickel for connection with an electrical circuit.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Inventors: Supriyo Bandyopadhyay, Saumil Bandyopadhyay, Pratik Agnihotri
  • Publication number: 20120267735
    Abstract: A magnetostrictive-piezoelectric multiferroic single- or multi-domain nanomagnet whose magnetization can be rotated through application of an electric field across the piezoelectric layer has a structure that can include either a shape-anisotropic mangnetostrictive nanomagnet with no magnetocrystalline anisotropy or a circular nanomagnet with biaxial magnetocrystalline anisotropy with dimensions of nominal diameter and thickness. This structure can be used to write and store binary bits encoded in the magnetization orientation, thereby functioning as a memory element, or perform both Boolean and non-Boolean computation, or be integrated with existing magnetic tunneling junction (MTJ) technology to perform a read operation by adding a barrier layer for the MTJ having a high coercivity to serve as the hard magnetic layer of the MTJ, and electrical contact layers of a soft material with small Young's modulus.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 25, 2012
    Inventors: Jayasimha Atulasimha, Supriyo Bandyopadhyay
  • Patent number: 6501676
    Abstract: A method of storing and accessing data utiliaing two-terminal static memory cells made from semiconductor quantum dots. Each quantum dot is approximately 10 nm in dimension so as to comprise approximately 1000-10,000 atoms, and each memory cell has in a volume of approximately 6.4×107 cubic Angstroms, thereby corresponding to about 300,000 atoms. In use one of at least two possible stable states is set in the static memory cell by application of a D.C. voltage across the two terminals. The stable state is then monitored by application of A.C. voltage across the two terminals while monitoring the resulting A.C. current flow.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 31, 2002
    Assignee: The Board of Regents of the University of Nebraska
    Inventors: Supriyo Bandyopadhyay, David Zaretsky
  • Patent number: 5747180
    Abstract: A method of fabricating two-dimensional regimented and quasi periodic arrays of metallic and semiconductor nanostructures (quantum dots) with diameters of .about.100 .ANG.(10 nm) includes the steps of polishing and anodizing a substrate to form a regimented quasi-periodic array of nanopits. The array forms a template for metallic or semiconductor material. The desired material is deposited in the nanopits by immersing the substrate in an appropriate solution and using the substrate as one cathode and inserting a second cathode in the solution.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: May 5, 1998
    Assignee: University of Notre Dame Du Lac
    Inventors: Albert E. Miller, Supriyo Bandyopadhyay