Patents by Inventor Suresh Parameswaran

Suresh Parameswaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11488887
    Abstract: In one example, a method includes providing a first side of a semiconductor substrate with a plurality of transistors, etching a second side of the substrate, opposite the first side, with a pattern of trenches, the trenches having a pre-defined depth and width, and providing the etched semiconductor substrate in a package. In one example, the predefined depth and width of the trenches is such so as to increase the surface area of the second side of the substrate by at least 20 percent. In one example, the method also includes providing a layer of a thermal interface material (TIM) on the second side of the substrate, including to fill at least a portion of the trenches.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: November 1, 2022
    Assignee: XILINX, INC.
    Inventors: Gamal Refai-Ahmed, Suresh Ramalingam, Boon Y. Ang, Toshiyuki Hisamura, Suresh Parameswaran, Scott McCann, Hoa Lap Do
  • Patent number: 11073550
    Abstract: A test vehicle, along with methods for fabricating and using a test vehicle, are disclosed herein. In one example, a test vehicle is provided that includes a substrate, at least a first passive die mounted on the substrate, and at least a first test die mounted on the substrate. The first test die includes test circuitry configured to test continuity through solder interconnects formed between the substrate and the first passive die.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: July 27, 2021
    Assignee: XILINX, INC.
    Inventors: Yuqing Gong, Suresh Parameswaran, Boon Y. Ang
  • Patent number: 8040164
    Abstract: An integrated circuit may include at least a first replica driver stage coupled between a reference impedance input and a first power supply node and having a first programmable driver impedance set by a first driver configuration value in the same manner as a first output driver section of the integrated circuit. At least a first replica input termination stage may be coupled between the reference impedance input and the first power supply node and having a first programmable termination impedance set by a first termination configuration value in the same manner as a first input termination section of the integrated circuit. An impedance programming circuit may generate at least the first driver configuration value and the first termination configuration value in response to a potential at the reference node.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 18, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Suresh Parameswaran, Joseph Tzou, Morgan Whately, Thinh Tran
  • Patent number: 7728619
    Abstract: An improved circuit and method for programmable cascading of impedance matching in a multi-chip configuration are disclosed. Handshaking is implemented in cascaded chips by defining a master-slave configuration, and impedance is evaluated in cascaded chips in a non-overlapping manner. The circuit includes a plurality of chips arranged in a cascading configuration. A cascade output pin of a chip is coupled to a cascade input pin of a cascaded chip to enable handshaking between the plurality of chips. The plurality of chips are coupled to a common precision resistor via a common impedance line to enable each chip to calibrate impedance of the chip. Each of the plurality of chips includes a control circuit. Each control circuit includes a state machine circuit. The control circuit is configured to control a non-overlapping clock cycle of each chip during which the impedance of the chip is evaluated.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 1, 2010
    Inventors: Joseph Jengtao Tzou, Suresh Parameswaran, Thinh Dinh Tran
  • Patent number: 7719908
    Abstract: Embodiments of the invention relate to the testing and reduction of read disturb failures in a memory, e.g., an array of SRAM cells. A read disturb test mode may be added during wafer sort to identify any marginal memory cells that may fail read disturb, thus minimizing yield loss. The read disturb test mode may include first writing data to the memory. After a predetermined time period, the read disturb test mode reads data from the same memory, and compares the read data with the data previously written to the memory. A repair signal may be generated, when the read data is different from the data previously written to the memory. Additionally, a system may be implemented to reduce read disturb failures in the memory. The system may include a match logic circuit and a data selecting circuit. When a match condition is satisfied, data is read from a register that stores the previous written data, instead of from the memory. The match logic circuit may be selectively enabled or disabled.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Joseph Tzou, Suresh Parameswaran, Thinh Tran
  • Patent number: 7535772
    Abstract: Data paths (100 and 900) can be configured to accommodate two or four burst data sequences, with a data value being input/output each half clock cycle. A data sequence can be a fixed order or user-defined order depending upon a selected option. A data input path (100) can reduce power consumption with an enable signal (dinen) timed to activate after data input lines have settled values. A data output path (900) can access output data in a parallel fashion for subsequent output according to a burst sequence. Cycle latencies for such output data can include one clock cycle latency or one and a half-clock cycles. A data output path (900) can also accommodate various clocking modes, including: single clocking with a delay locked loop (DLL) type circuit enabled, single clocking with a delay locked loop (DLL) type circuit disabled, and double clocking, with a phase difference between an input clock and output clock of up to 180°.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: May 19, 2009
    Assignee: Cypress Semiconductor Corporation
    Inventors: Suresh Parameswaran, Thinh Tran
  • Publication number: 20090085614
    Abstract: An integrated circuit may include at least a first replica driver stage coupled between a reference impedance input and a first power supply node and having a first programmable driver impedance set by a first driver configuration value in the same manner as a first output driver section of the integrated circuit. At least a first replica input termination stage may be coupled between the reference impedance input and the first power supply node and having a first programmable termination impedance set by a first termination configuration value in the same manner as a first input termination section of the integrated circuit. An impedance programming circuit may generate at least the first driver configuration value and the first termination configuration value in response to a potential at the reference node.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Inventors: Suresh Parameswaran, Joseph Tzou, Morgan Whately, Thinh Tran
  • Patent number: 7403446
    Abstract: Synchronous SRAM may conform to Std. Sync or early-write at an external interface whilst providing late-write internally.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: July 22, 2008
    Assignee: Cypress Semiconductor Corporation
    Inventors: Suresh Parameswaran, Thinh Tran, Joseph Tzou
  • Patent number: 7142477
    Abstract: A memory interface system and method are provided for transferring data between a memory controller and an array of storage elements. The storage elements are preferably SRAM elements, and the memory interface is preferably one having separate address bus paths and separate data bus paths. One address bus path is reserved for receiving read addresses and the other address bus path is reserved for receiving write addresses. One of the data bus paths is reserved for receiving read data from the array, and the other data bus path is reserved for receiving data written to the array. While bifurcating the address and data bus paths within the interface is transparent to the memory controller, the separate paths afford addressing phases of a read and write address operation to be partially overlapped, as well as the data transfer phases.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: November 28, 2006
    Assignee: Cypress Semiconductor Corp.
    Inventors: Thinh Tran, Joseph Tzou, Suresh Parameswaran