Patents by Inventor Susmit Singha Roy

Susmit Singha Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11462438
    Abstract: Methods of producing a self-aligned structure are described. The methods comprise forming a metal-containing film in a substrate feature and silicidizing the metal-containing film to form a self-aligned structure comprising metal silicide. In some embodiments, the rate of formation of the self-aligned structure is controlled. In some embodiments, the amount of volumetric expansion of the metal-containing film to form the self-aligned structure is controlled. Methods of forming self-aligned vias are also described.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 4, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Susmit Singha Roy, Srinivas Gandikota, Abhijit Basu Mallick, Amrita B. Mullick
  • Patent number: 11437274
    Abstract: Apparatuses and methods to provide a fully self-aligned via are described. A first metallization layer comprises a set of first conductive lines extending along a first direction on a first insulating layer on a substrate, the set of first conductive lines recessed below a top portion of the first insulating layer. A capping layer is on the first insulating layer, and a second insulating layer is on the capping layer. A second metallization layer comprises a set of second conductive lines on the second insulating layer and on a third insulating layer above the first metallization layer. The set of second conductive lines extend along a second direction that crosses the first direction at an angle. At least one via is between the first metallization layer and the second metallization layer. The via is self-aligned along the second direction to one of the first conductive lines. The tapering angle of the via opening may be in a range of from about 60° to about 120°.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: September 6, 2022
    Assignee: Micromaterials LLC
    Inventors: Regina Freed, Madhur Sachan, Susmit Singha Roy, Gabriela Alva, Ho-yung David Hwang, Uday Mitra, El Mehdi Bazizi, Angada Bangalore Sachid, He Ren, Sushant Mittal
  • Patent number: 11437273
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts utilizing the formation of self-aligned growth pillars. The pillars lead to taller gate heights and increased margins against shorting defects.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: September 6, 2022
    Assignee: Micromaterials LLC
    Inventors: Yuriy Shusterman, Madhur Sachan, Susmit Singha Roy, Regina Freed, Sanjay Natarajan
  • Patent number: 11430801
    Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming a plurality of nonvolatile memory cells, comprising forming, on a substrate, a stack of alternating layers of metal including a first layer of metal and a second layer of metal different from the first layer of metal; removing the first layer of metal to form spaces between the alternating layers of the second layer of metal; and one of depositing a first layer of material to partially fill the spaces to leave air gaps therein or depositing a second layer of material to fill the spaces.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: August 30, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Takehito Koshizawa, Mukund Srinivasan, Tomohiko Kitajima, Chang Seok Kang, Sung-Kwan Kang, Gill Y. Lee, Susmit Singha Roy
  • Patent number: 11414751
    Abstract: Methods of producing a self-aligned structure are described. The methods comprise forming a metal sub-oxide film in a substrate feature and oxidizing the sub-oxide film to form a self-aligned structure comprising metal oxide. In some embodiments, a metal film is deposited and then treated to form the metal sub-oxide film. In some embodiments, the process of depositing and treating the metal film to form the metal sub-oxide film is repeated until a predetermined depth of metal sub-oxide film is formed within the substrate feature.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 16, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Srinivas Gandikota, Susmit Singha Roy, Abhijit Basu Mallick
  • Publication number: 20220246432
    Abstract: Methods of doping a semiconductor material are disclosed. Some embodiments provide for conformal doping of three dimensional structures. Some embodiments provide for doping with high concentrations of boron for p-type doping.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Abhijit Basu Mallick, Swaminathan Srinivasan, Rui Cheng, Susmit Singha Roy, Gaurav Thareja, Mukund Srinivasan, Sanjay Natarajan
  • Publication number: 20220216058
    Abstract: Exemplary methods of semiconductor processing may include delivering a carbon-containing precursor and a hydrogen-containing precursor to a processing region of a semiconductor processing chamber. The methods may include generating a plasma of the carbon-containing precursor and the hydrogen-containing precursor within the processing region of the semiconductor processing chamber. The methods may include forming a layer of graphene on a substrate positioned within the processing region of the semiconductor processing chamber. The substrate may be maintained at a temperature below or about 600° C. The methods may include halting flow of the carbon-containing precursor while maintaining the plasma with the hydrogen-containing precursor.
    Type: Application
    Filed: January 6, 2021
    Publication date: July 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jialiang Wang, Susmit Singha Roy, Abhijit Basu Mallick, Nitin K. Ingle
  • Publication number: 20220189824
    Abstract: Methods for forming defect-free gap fill materials comprising germanium oxide are disclosed. In some embodiments, the gap fill material is deposited by exposing a substrate surface to a germane precursor and an oxidant simultaneously. The germane precursor may be flowed intermittently. The substrate may also be exposed to a second oxidant to increase the relative concentration of oxygen within the gap fill material.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Takehito Koshizawa, Bo Qi, Abhijit Basu Mallick
  • Publication number: 20220186365
    Abstract: Methods for forming coating films comprising germanium oxide are disclosed. In some embodiments, the films are super-conformal to a feature on the surface of a substrate. The films are deposited by exposing a substrate surface to a germane precursor and an oxidant simultaneously. The germane precursor may be flowed intermittently. The substrate may also be exposed to a second oxidant to increase the relative concentration of oxygen within the super-conformal film.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Takehito Koshizawa, Bo Qi, Abhijit Basu Mallick
  • Publication number: 20220172989
    Abstract: Processing methods comprise forming a gap fill layer comprising tungsten or molybdenum by exposing a substrate surface having at least one feature thereon sequentially to a metal precursor and a reducing agent comprising hydrogen to form the gap fill layer in the feature, wherein there is not a nucleation layer between the substrate surface and the gap fill layer.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yihong Chen, Kelvin Chan, Xinliang Lu, Srinivas Gandikota, Yong Wu, Susmit Singha Roy, Chia Cheng Chin
  • Publication number: 20220165566
    Abstract: Methods for depositing a silicon-germanium film on a substrate are described. The method comprises exposing a substrate to a silicon precursor and a germanium precursor to form a conformal silicon-germanium film. The substrate comprises at least one film stack and at least one feature, the film stack comprising alternating layers of silicon and silicon-germanium. The silicon-germanium film has a conformality greater than 50%.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 26, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Abhijit Basu Mallick
  • Publication number: 20220157654
    Abstract: A method of forming an electronic device is disclosed. The method comprises forming depositing a metal on a substrate, the metal comprising one or more of copper (Cu), titanium (Ti), or tantalum (Ta). A metal cap is deposited on the metal. The metal cap comprises one or more of molybdenum (Mo), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), platinum (Pt), or gold (Au). The substrate is then exposed to an anneal process, e.g., a hydrogen high-pressure anneal. The formation of the metal cap on the metal minimizes parasitic adsorption of hydrogen by the underlying metal.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Steven C.H. Hung, Srinivas D. Nemani, Yixiong Yang, Susmit Singha Roy, Nikolaos Bekiaris
  • Patent number: 11328928
    Abstract: Methods of doping a semiconductor material are disclosed. Some embodiments provide for conformal doping of three dimensional structures. Some embodiments provide for doping with high concentrations of boron for p-type doping.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: May 10, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Srinivas Gandikota, Abhijit Basu Mallick, Swaminathan Srinivasan, Rui Cheng, Susmit Singha Roy, Gaurav Thareja, Mukund Srinivasan, Sanjay Natarajan
  • Patent number: 11315943
    Abstract: Methods of forming memory structures are described. A metal film is deposited in the features of a structured substrate and volumetrically expanded to form pillars. A blanket film is deposited to a height less than the height of the pillars and the blanket film is removed from the top of the pillars. The height of the pillars is reduced so that the top of the pillars are below the surface of the blanket film and the process is optionally repeated to form a structure of predetermined height. The pillars can be removed from the features after formation of the predetermined height structure to form high aspect ratio features.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Praburam Gopalraja, Susmit Singha Roy, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20220108888
    Abstract: Methods for selectively depositing germanium containing films are disclosed. Some embodiments of the disclosure provide deposition on a bare silicon with little to no deposition on a silicon oxide surface. Some embodiments of the disclosure provide conformal films on trench sidewalls. Some embodiments of the disclosure provide superior gap fill without seams or voids.
    Type: Application
    Filed: October 4, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Abhijit Basu Mallick
  • Patent number: 11289374
    Abstract: Processing methods comprise forming a gap fill layer comprising tungsten or molybdenum by exposing a substrate surface having at least one feature thereon sequentially to a metal precursor and a reducing agent comprising hydrogen to form the gap fill layer in the feature, wherein there is not a nucleation layer between the substrate surface and the gap fill layer.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yihong Chen, Kelvin Chan, Xinliang Lu, Srinivas Gandikota, Yong Wu, Susmit Singha Roy, Chia Cheng Chin
  • Publication number: 20220068640
    Abstract: Examples of the present technology include semiconductor processing methods to form diffusion barriers for germanium in a semiconductor structure. The methods may include forming a semiconductor layer stack from pairs of Si-and-SiGe layers. The Si-and-SiGe layer pairs may be formed by forming a silicon layer, and then forming the germanium barrier layer of the silicon layer. In some embodiments, the germanium-barrier layer may be less than or about 20 ?. A silicon-germanium layer may be formed on the germanium-barrier layer to complete the formation of the Si-and-SiGe layer pair. In some embodiments, the silicon layer may be an amorphous silicon layer, and the SiGe layer may be characterized by greater than or about 5 atom % germanium. Examples of the present technology also include semiconductor structures that include a silicon-germanium layer, a germanium-barrier layer, and a silicon layer.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 3, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Takehito Koshizawa, Bo Qi, Abhijit Basu Mallick, Nitin K. Ingle
  • Publication number: 20220028691
    Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method comprises forming a first metal oxo film on the substrate with a first vapor phase process including a first metal precursor vapor and a first oxidant vapor, and forming a second metal oxo film over the first metal oxo film with a second vapor phase process including a second metal precursor vapor and a second oxidant vapor.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Inventors: Lakmal Charidu Kalutarage, Mark Joseph Saly, Bhaskar Jyoti Bhuyan, Thomas Joseph Knisley, Kelvin Chan, Regina Germanie Freed, David Michael Thompson, Susmit Singha Roy, Madhur Sachan
  • Publication number: 20220026807
    Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method comprises forming a first metal oxo film on the substrate with a first vapor phase process including a first metal precursor vapor and a first oxidant vapor, and forming a second metal oxo film over the first metal oxo film with a second vapor phase process including a second metal precursor vapor and a second oxidant vapor.
    Type: Application
    Filed: June 23, 2021
    Publication date: January 27, 2022
    Inventors: Lakmal Charidu Kalutarage, Mark Joseph Saly, Bhaskar Jyoti Bhuyan, Thomas Joseph Knisley, Kelvin Chan, Regina Germanie Freed, David Michael Thompson, Susmit Singha Roy, Madhur Sachan
  • Patent number: 11232955
    Abstract: Processing methods to etch metal oxide films with less etch residue are described. The methods comprise etching a metal oxide film with a metal halide etchant, and exposing the etch residue to a reductant to remove the etch residue. Some embodiments relate to etching tungsten oxide films. Some embodiments utilize tungsten halides to etch metal oxide films. Some embodiments utilize hydrogen gas as a reductant to remove etch residues.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: January 25, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amrita B. Mullick, Abhijit Basu Mallick, Srinivas Gandikota, Susmit Singha Roy, Yingli Rao, Regina Freed, Uday Mitra