Patents by Inventor Suvi Haukka

Suvi Haukka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190153593
    Abstract: A method for depositing a metal film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a decaborane precursor onto the substrate. A reaction between the metal halide precursor and the decaborane precursor forms a metal film, specifically a metal boride.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Inventors: Chiyu Zhu, Kiran Shrestha, Suvi Haukka
  • Patent number: 10283319
    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: May 7, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10280519
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: May 7, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10273584
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 30, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10204790
    Abstract: In accordance with some embodiments herein, methods for deposition of thin films are provided. In some embodiments, thin film deposition is performed in a plurality of stations, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other so as to minimize or prevent undesired chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: February 12, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Jun Kawahara, Suvi Haukka, Antti Niskanen, Eva Tois, Raija Matero, Hidemi Suemori, Jaako Anttila, Yukihiro Mori
  • Publication number: 20190043962
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Application
    Filed: June 4, 2018
    Publication date: February 7, 2019
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Patent number: 10190213
    Abstract: A method for depositing a metal film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a decaborane precursor onto the substrate. A reaction between the metal halide precursor and the decaborane precursor forms a metal film, specifically a metal boride.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 29, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Chiyu Zhu, Kiran Shrestha, Suvi Haukka
  • Publication number: 20190006586
    Abstract: Methods are provided for depositing doped chalcogenide films. In some embodiments the films are deposited by vapor deposition, such as by atomic layer deposition (ALD). In some embodiments a doped GeSe film is formed. The chalcogenide film may be doped with carbon, nitrogen, sulfur, silicon, or a metal such as Ti, Sn, Ta, W, Mo, Al, Zn, In, Ga, Bi, Sb, As, V or B. In some embodiments the doped chalcogenide film may be used as the phase-change material in a selector device.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 3, 2019
    Inventors: Jan Willem Maes, Suvi Haukka
  • Publication number: 20180350587
    Abstract: Methods for depositing oxide thin films, such as metal oxide, metal silicates, silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first reactant that comprises oxygen and a component of the oxide, and a second reactant comprising reactive species that does not include oxygen species. In some embodiments the plasma power used to generate the reactive species can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features. In some embodiments oxide thin films are selectively deposited on a first surface of a substrate relative to a second surface, such as on a dielectric surface relative to a metal or metallic surface.
    Type: Application
    Filed: May 4, 2018
    Publication date: December 6, 2018
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia, Eva Tois, Suvi Haukka, Toshiya Suzuki
  • Patent number: 10147600
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: December 4, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 10087522
    Abstract: A method for depositing a metal boride film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a boron compound precursor onto the substrate. A reaction between the metal halide precursor and the boron compound precursor forms a metal boride film. Specifically, the method discloses forming a tantalum boride (TaB2) or a niobium boride (NbB2) film.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 2, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Petri Raisanen, Eric Shero, Suvi Haukka, Robert Brennan Milligan, Michael Eugene Givens
  • Publication number: 20180211834
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 26, 2018
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20180182597
    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 28, 2018
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10002936
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 19, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Publication number: 20180166255
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 14, 2018
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Publication number: 20180163312
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 14, 2018
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 9875893
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: January 23, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20180010247
    Abstract: A method for selectively depositing a metal oxide film is disclosed. In particular, the method comprises pulsing a metal or semi-metal precursor onto the substrate and pulsing an organic reactant onto the substrate. A reaction between the metal or semi-metal precursor and the organic reactant selectively forms a metal oxide film on either a dielectric layer or a metal layer.
    Type: Application
    Filed: July 8, 2016
    Publication date: January 11, 2018
    Inventors: Antti Juhani Niskanen, Eva Tois, Hidemi Suemori, Suvi Haukka
  • Publication number: 20170338111
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: January 10, 2017
    Publication date: November 23, 2017
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 9812320
    Abstract: According to the invention there is provided a method of filling one or more gaps created during manufacturing of a feature on a substrate by providing a deposition method comprising; introducing a first reactant to the substrate with a first dose, thereby forming no more than about one monolayer by the first reactant; introducing a second reactant to the substrate with a second dose. The first reactant is introduced with a subsaturating first dose reaching only a top area of the surface of the one or more gaps and the second reactant is introduced with a saturating second dose reaching a bottom area of the surface of the one or more gaps. A third reactant may be provided to the substrate in the reaction chamber with a third dose, the third reactant reacting with at least one of the first and second reactant.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: November 7, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Viljami Pore, Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Steven R. A. Van Aerde, Suvi Haukka, Atsuki Fukuzawa, Hideaki Fukuda