Patents by Inventor Svetlana B. Radovanov

Svetlana B. Radovanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11600473
    Abstract: An ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Patent number: 11049691
    Abstract: A system and method for optimizing a ribbon ion beam in a beam line implantation system is disclosed. The system includes a mass resolving apparatus having a resolving aperture, in which the resolving aperture may be moved in the X and Z directions. Additionally, a controller is able to manipulate the mass analyzer and quadrupole lenses so that the crossover point of desired ions can also be moved in the X and Z directions. By manipulating the crossover point and the resolving aperture, the parameters of the ribbon ion beam may be manipulated to achieve a desired result. Movement of the crossover point in the X direction may affect the mean horizontal angle of the beamlets, while movement of the crossover point in the Z direction may affect the horizontal angular spread and beam current.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: June 29, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Robert C. Lindberg, Eric D. Hermanson, Frank Sinclair, Antonella Cucchetti, Randy Martin, Michael D. Johnson, Ana Samolov, Svetlana B. Radovanov
  • Publication number: 20210134569
    Abstract: An ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Patent number: 10923306
    Abstract: An indirectly heated cathode ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Publication number: 20200294750
    Abstract: An indirectly heated cathode ion source having an electrically isolated extraction plate is disclosed. By isolating the extraction plate, a different voltage can be applied to the extraction plate than to the body of the arc chamber. By applying a more positive voltage to the extraction plate, more efficient ion source operation with higher plasma density can be achieved. In this mode the plasma potential is increased, and the electrostatic sheath reduces losses of electrons to the chamber walls. By applying a more negative voltage, an ion rich sheath adjacent to the extraction aperture can be created. In this mode, conditioning and cleaning of the extraction plate is achieved via ion bombardment. Further, in certain embodiments, the voltage applied to the extraction plate can be pulsed to allow ion extraction and cleaning to occur simultaneously.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Svetlana B. Radovanov, Bon-Woong Koo, Alexandre Likhanskii
  • Publication number: 20190198292
    Abstract: A system and method for optimizing a ribbon ion beam in a beam line implantation system is disclosed. The system includes a mass resolving apparatus having a resolving aperture, in which the resolving aperture may be moved in the X and Z directions. Additionally, a controller is able to manipulate the mass analyzer and quadrupole lenses so that the crossover point of desired ions can also be moved in the X and Z directions. By manipulating the crossover point and the resolving aperture, the parameters of the ribbon ion beam may be manipulated to achieve a desired result. Movement of the crossover point in the X direction may affect the mean horizontal angle of the beamlets, while movement of the crossover point in the Z direction may affect the horizontal angular spread and beam current.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 27, 2019
    Inventors: Bon-Woong Koo, Robert C. Lindberg, Eric D. Hermanson, Frank Sinclair, Antonella Cucchetti, Randy Martin, Michael D. Johnson, Ana Samolov, Svetlana B. Radovanov
  • Patent number: 10290466
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 10290470
    Abstract: An apparatus and method for the creation of negative ion beams is disclosed. The apparatus includes an RF ion source, having an extraction aperture. An antenna disposed proximate a dielectric window is energized by a pulsed RF power supply. While the RF power supply is actuated, a plasma containing primarily positive ions and electrons is created. When the RF power supply is deactivated, the plasma transforms into an ion-ion plasma. Negative ions may be extracted from the RF ion source while the RF power supply is deactivated. These negative ions, in the form of a negative ribbon ion beam, may be directed toward a workpiece at a specific incident angle. Further, both a positive ion beam and a negative ion beam may be extracted from the same ion source by pulsing the bias power supply multiple times each period.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Daniel Distaso, Svetlana B. Radovanov, Joseph P. Dzengeleski
  • Patent number: 10290462
    Abstract: An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Alexandre Likhanskii, Svetlana B. Radovanov, Anthony Renau
  • Publication number: 20180166250
    Abstract: An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
    Type: Application
    Filed: February 9, 2018
    Publication date: June 14, 2018
    Inventors: Bon-Woong Koo, Alexandre Likhanskii, Svetlana B. Radovanov, Anthony Renau
  • Patent number: 9988711
    Abstract: An apparatus may include an extraction assembly comprising at least a first extraction aperture and second extraction aperture, the extraction assembly configured to extract at least a first ion beam and second ion beam from a plasma; a target assembly disposed adjacent the extraction assembly and including at least a first target portion comprising a first material and a second target portion comprising a second material, the first target portion and second target portion being disposed to intercept the first ion beam and second ion beam, respectively; and a substrate stage disposed adjacent the target assembly and configured to scan a substrate along a scan axis between a first point and a second point, wherein the first target portion and second target portion are separated from the first point by a first distance and second distance, respectively, the first distance being less than the second distance.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 5, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Alexandre Likhanskii, William Davis Lee, Svetlana B. Radovanov
  • Publication number: 20180087148
    Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 29, 2018
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
  • Patent number: 9922795
    Abstract: An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: March 20, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Alexandre Likhanskii, Svetlana B. Radovanov, Anthony Renau
  • Publication number: 20180068830
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 8, 2018
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 9865430
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: January 9, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 9840772
    Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: December 12, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
  • Publication number: 20170309454
    Abstract: An apparatus and method for the creation of negative ion beams is disclosed. The apparatus includes an RF ion source, having an extraction aperture. An antenna disposed proximate a dielectric window is energized by a pulsed RF power supply. While the RF power supply is actuated, a plasma containing primarily positive ions and electrons is created. When the RF power supply is deactivated, the plasma transforms into an ion-ion plasma. Negative ions may be extracted from the RF ion source while the RF power supply is deactivated. These negative ions, in the form of a negative ribbon ion beam, may be directed toward a workpiece at a specific incident angle. Further, both a positive ion beam and a negative ion beam may be extracted from the same ion source by pulsing the bias power supply multiple times each period.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Inventors: Daniel Distaso, Svetlana B. Radovanov, Joseph P. Dzengeleski
  • Publication number: 20170247791
    Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
    Type: Application
    Filed: May 11, 2017
    Publication date: August 31, 2017
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
  • Patent number: 9734991
    Abstract: An apparatus and method for the creation of negative ion beams is disclosed. The apparatus includes an RF ion source, having an extraction aperture. An antenna disposed proximate a dielectric window is energized by a pulsed RF power supply. While the RF power supply is actuated, a plasma containing primarily positive ions and electrons is created. When the RF power supply is deactivated, the plasma transforms into an ion-ion plasma. Negative ions may be extracted from the RF ion source while the RF power supply is deactivated. These negative ions, in the form of a negative ribbon ion beam, may be directed toward a workpiece at a specific incident angle. Further, both a positive ion beam and a negative ion beam may be extracted from the same ion source by pulsing the bias power supply multiple times each period.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: August 15, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Daniel Distaso, Svetlana B. Radovanov, Joseph P. Dzengeleski
  • Publication number: 20170178866
    Abstract: A plasma processing apparatus may include: a plasma chamber; a power source to generate a plasma in the plasma chamber; an extraction voltage supply coupled to the plasma chamber to apply a pulsed extraction voltage between the plasma chamber and a substrate; an extraction assembly disposed along a side of the plasma chamber between the plasma chamber and the substrate, the extraction assembly having at least one aperture, the at least one aperture defining a first ion beam when the plasma is present in the plasma chamber and the pulsed extraction voltage is applied; a deflection electrode adjacent the extraction assembly; and a controller to synchronize application of the pulsed extraction voltage with application of a pulsed deflection voltage to the deflection electrode.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Svetlana B. Radovanov, Peter F. Kurunczi, Alexandre Likhanskii