Patents by Inventor Svetlana Mojsov

Svetlana Mojsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120101038
    Abstract: The present invention relates to the use of GLP-I, GLP-I derivatives or GLP-I fragments for skin regeneration or hair growth in mammals. As used for skin regeneration, GLP-I, GLP-I derivatives or GLP-I fragments can be applied to dermal wounds including burns, lacerations, cuts and scrapes. As used for hair growth, GLP-I, GLP-I derivatives or GLP-I fragments can be applied to humans suffering from alopecia, or baldness. GLP-I, GLP-I derivatives or GLP-I fragments can also be used to stimulate hair growth in animals raised for their pelts. GLP-I, GLP-I derivatives or GLP-I fragments can also be used in the redifferentiation of endothelial or skin cells into insulin producing cells, as a treatment for patients suffering from diabetes.
    Type: Application
    Filed: September 2, 2011
    Publication date: April 26, 2012
    Applicant: THE GENERAL HOSPITAL CORPORATION
    Inventors: Joel F. Habener, James F. List, Svetlana Mojsov
  • Publication number: 20090202497
    Abstract: The present invention relates to the use of GLP-I, GLP-I derivatives or GLP-I fragments for skin regeneration or hair growth in mammals. As used for skin regeneration, GLP-I, GLP-I derivatives or GLP-I fragments can be applied to dermal wounds including burns, lacerations, cuts and scrapes. As used for hair growth, GLP-I, GLP-I derivatives or GLP-I fragments can be applied to humans suffering from alopecia, or baldness. GLP-I, GLP-I derivatives or GLP-I fragments can also be used to stimulate hair growth in animals raised for their pelts. GLP-I, GLP-I derivatives or GLP-I fragments can also be used in the redifferentiation of endothelial or skin cells into insulin producing cells, as a treatment for patients suffering from diabetes.
    Type: Application
    Filed: August 22, 2006
    Publication date: August 13, 2009
    Applicant: The General Hospital Corporation
    Inventors: Joel F. Habener, James F. List, Svetlana Mojsov
  • Patent number: 7138486
    Abstract: Derivatives of glucagon-like peptide I (GLP-1) and especially GLP-1 (7-37) have been found to have insulinotropic activity. The invention pertains to a composition comprising an acid addition salt of GLP-I (7-37) and to a composition comprising a carboxylate salt of GLP-I (7-37). The invention also pertains to method of treating type II diabetes mellitus by providing derivatives of GLP-I (7-37) to the patient.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: November 21, 2006
    Assignee: The General Hospital Corporation
    Inventors: Joel F. Habener, Svetlana Mojsov
  • Patent number: 6316596
    Abstract: The invention relates to an energy homeostasis peptide hormone receptor, and in particular, a second common PACAP/VIP receptor (PACAP/VIP R-2 or R-2B) cDNA expressed in human adipocytes. Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two structurally related peptides with multiple physiological effects. The present receptor recognizes PACAP-38 and VIP with similar affinity and is coupled to the cAMP-mediated signal transduction pathway. Transcripts of the second common PACAP/VIP R-2 receptor are also found in human brain and in a number of peripheral tissues, such as pancreas, muscle, heart, lung, kidney, stomach and at low levels in the liver, while transcripts of PACAP/VIP R-2B are not found in pancreas, stomach or kidney.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: November 13, 2001
    Assignee: The Rockefeller University
    Inventors: Svetlana Mojsov, Yang Wei
  • Patent number: 5882899
    Abstract: The invention relates to an energy homeostasis peptide hormone receptor, and in particular, a second common PACAP/VIP receptor (PACAP/VIP R-2 or R-2B) cDNA expressed in human adipocytes. Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two structurally related peptides with multiple physiological effects. The present receptor recognizes PACAP-38 and VIP with similar affinity and is coupled to the cAMP-mediated signal transduction pathway. Transcripts of the second common PACAP/VIP R-2 receptor are also found in human brain and in a number of peripheral tissues, such as pancreas, muscle, heart, lung, kidney, stomach and at low levels in the liver, while transcripts of PACAP/VIP R-2B are not found in pancreas, stomach or kidney.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: March 16, 1999
    Assignee: The Rockefeller University
    Inventors: Svetlana Mojsov, Yang Wei
  • Patent number: 5831051
    Abstract: The invention relates to an energy homeostasis peptide hormone receptor, and in particular, a second common PACAP/VIP receptor (PACAP/VIP R-2 or R-2B) cDNA expressed in human adipocytes. Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two structurally related peptides with multiple physiological effects. The present receptor recognizes PACAP-38 and VIP with similar affinity and is coupled to the cAMP-mediated signal transduction pathway. Transcripts of the second common PACAP/VIP R-2 receptor are also found in human brain and in a number of peripheral tissues, such as pancreas, muscle, heart, lung, kidney, stomach and at low levels in the liver, while transcripts of PACAP/VIP R-2B are not found in pancreas, stomach or kidney.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: November 3, 1998
    Assignee: The Rockefeller University
    Inventors: Svetlana Mojsov, Yang Wei
  • Patent number: 5545618
    Abstract: The invention provides effective analogs of the active GLP-1 peptides, 7-34, 7-35, 7-36, and 7-37, which have improved characteristics for treatment of diabetes Type II. These analogs have amino acid substitutions at positions 7-10 and/or are truncated at the C-terminus and/or contain various other amino acid substitutions in the basic peptide. The analogs may either have an enhanced capacity to stimulate insulin production as compared to glucagon or may exhibit enhanced stability in plasma as compared to GLP-1 (7-37) or both. Either of these properties will enhance the potency of the analog as a therapeutic. Analogs having D-amino acid substitutions in the 7 and 8 positions and/or N-alkylated or N-acylated amino acids in the 7 position are particularly resistant to degradation in vivo.
    Type: Grant
    Filed: December 10, 1993
    Date of Patent: August 13, 1996
    Inventors: Douglas I. Buckley, Joel F. Habener, Joanne B. Mallory, Svetlana Mojsov