Patents by Inventor Svetlana V. Boriskina

Svetlana V. Boriskina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240173911
    Abstract: A polyethylene (PE)-based fully-recyclable textile material and product formed by three-dimensionally printing PE structures onto a polyethylene textile is provided. The textile material can include one or more PE filaments being directly deposited onto a PE fabric via an FDM printing process to form a mono-material. The deposition of structures onto the PE fabric, which can form the substrate of the textile, can be used to enable changes to the mechanical properties of the fabric and/or create novel design aesthetics. Moreover, this material can be characterized by its ability to be thermally recycled, from which new PE-based products and materials may be manufactured. For example, the PE-based fully-recyclable textile material can be formed into a PE recyclate that can be melted and re-pelletized for formation of alternative PE-based fully recyclable textile materials.
    Type: Application
    Filed: November 29, 2023
    Publication date: May 30, 2024
    Inventors: Svetlana V. Boriskina, Volodymyr Korolovych, Leslie Yan, Duo Xu
  • Publication number: 20240093424
    Abstract: The present disclosure generally relates to textiles that are optimized to maximize moisture wicking and evaporative performance thereof. In some embodiments, raw polyethylene (PE) powder can be extruded into fibers that can be modified by oxidation along a surface thereof to increase hydrophilicity of the surface. Once sufficiently oxidized, the fibers can be bundled to form multi-filament yarns that can then be spun, weaved, knitted, and/or otherwise associated with one another to form a polyethylene fabric. The PE fibers can be further modified to increase a capillary force of the bundle, thereby further increasing hydrophilicity of the resulting fabric. Engineering of the capillary force can be performed by optimizing one or more of a fiber size, a density, or a cross-section of the fibers and/or the bundles. The resultant fabric can exhibit a strong weight reduction, stain resistance, and drying capabilities, among other capabilities.
    Type: Application
    Filed: January 20, 2022
    Publication date: March 21, 2024
    Inventors: Svetlana V. BORISKINA, Gang CHEN, Luis Marcelo LOZANO SANCHEZ, Matteo ALBERGHINI
  • Publication number: 20220173303
    Abstract: Photo-detectors disclosed include at least one of a thin film or a heterostructure of photo-sensitive material and a pair of Ohmic contacts coupled to the at least one of the thin film or the heterostructure. The at least one of the thin film or the heterostructure is configured to be under a strain gradient to induce shift current flow within the material to perform photo-detection in a frequency range that includes a mid-infrared frequency range. The photo-detectors provided for can include a variety of configurations, such as a lateral configuration or a vertical configuration, and can operate in self-powered and negative illumination regimes. Associated methods are also provided, which can include inducing a strain gradient and performing photo-detection in a frequency range that includes a mid-infrared frequency range.
    Type: Application
    Filed: August 31, 2021
    Publication date: June 2, 2022
    Inventors: Svetlana V. Boriskina, Bruno Lorenzi, Gang Chen, Yoichiro Tsurimaki
  • Patent number: 10234172
    Abstract: A localized heating structure includes a spectrally-selective solar absorber, that absorbs incident solar radiation and reflects at wavelengths longer than 2 ?m, with an underlying heat-spreading layer having a thermal conductivity equal to or greater than 50 W/(mK), a thermally insulating layer, adjacent to the spectrally-selective solar absorber, having a thermal conductivity of less than 0.1 W/(mK), one or more evaporation openings through the spectrally-selective solar absorber and the thermally insulating layer, and an evaporation wick, disposed in one or more of the evaporation openings in the thermally insulating layer, that contacts liquid and allows the liquid to be transported from a location beneath the thermally insulating layer through to the spectrally-selective solar absorber in order to generate vapor from the liquid. The thermally insulating layer is configured to have a density less than the liquid so that the localized heating structure is able to float on the liquid.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: March 19, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: George Ni, Gang Chen, Svetlana V. Boriskina, Thomas Alan Cooper
  • Patent number: 10043932
    Abstract: A single-stack, solar power receiver comprising both a thermal absorber layer and a photovoltaic cell layer. The stack includes an aerogel layer, that is optically transparent and thermally insulating (“OTTI”); a spectrally selective high thermal conductivity (“SSTC”) thermal absorber layer; a bottom OTTI layer; and a PV cell layer. The SSTC layer includes a set of fins that substantially blocks solar radiation absorption in the band where PV cells are most sensitive. Photons with energies above or below this band block range are absorbed by the fins and the absorbed heat is conducted to pipes in the fin structure carrying a heated thermal working fluid to heat storage. Photons with energy in the band block range are reflected by the SSTC fins to the PV cell layer. The bottom OTTI aerogel layer keeps the PV cell operating near ambient temperature. The PV cell converts incident solar radiation to electrical energy.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: August 7, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana V. Boriskina, Kenneth McEnaney, Hadi Ghasemi, Selcuk Yerci, Andrej Lenert, Sungwoo Yang, Nenad Miljkovic, Lee A. Weinstein, David Bierman
  • Publication number: 20170038097
    Abstract: A localized heating structure includes a spectrally-selective solar absorber, that absorbs incident solar radiation and reflects at wavelengths longer than 2 ?m, with an underlying heat-spreading layer having a thermal conductivity equal to or greater than 50 W/(mK), a thermally insulating layer, adjacent to the spectrally-selective solar absorber, having a thermal conductivity of less than 0.1 W/(mK), one or more evaporation openings through the spectrally-selective solar absorber and the thermally insulating layer, and an evaporation wick, disposed in one or more of the evaporation openings in the thermally insulating layer, that contacts liquid and allows the liquid to be transported from a location beneath the thermally insulating layer through to the spectrally-selective solar absorber in order to generate vapor from the liquid. The thermally insulating layer is configured to have a density less than the liquid so that the localized heating structure is able to float on the liquid.
    Type: Application
    Filed: October 3, 2016
    Publication date: February 9, 2017
    Inventors: George Ni, Gang Chen, Svetlana V. Boriskina, Thomas Alan Cooper
  • Publication number: 20150053266
    Abstract: A single-stack, solar power receiver comprising both a thermal absorber layer and a photovoltaic cell layer. The stack includes an aerogel layer, that is optically transparent and thermally insulating (“OTTI”); a spectrally selective high thermal conductivity (“SSTC”) thermal absorber layer; a bottom OTTI layer; and a PV cell layer. The SSTC layer includes a set of fins that substantially blocks solar radiation absorption in the band where PV cells are most sensitive. Photons with energies above or below this band block range are absorbed by the fins and the absorbed heat is conducted to pipes in the fin structure carrying a heated thermal working fluid to heat storage. Photons with energy in the band block range are reflected by the SSTC fins to the PV cell layer. The bottom OTTI aerogel layer keeps the PV cell operating near ambient temperature. The PV cell converts incident solar radiation to electrical energy.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana V. Boriskina, Kenneth McEnaney, Hadi Ghasemi, Selcuk Yerci, Andrej Lenert, Sungwoo Yang, Nenad Miljkovic, Lee A. Weinstein, David Bierman
  • Patent number: 8339597
    Abstract: A label-free multiplexed sensing platform is based on light interaction with aperiodic photonic structures with an advantage of a broadband operation. Multiple-scattering-induced “fingerprinting” colorimetric signatures can be used as a transduction mechanism. Aperiodic sensing platforms can operate in the infrared to provide an overlap with spectral fingerprints of biological molecules. Miniaturized optical biosensors may be based on engineered colorimetric scattering signatures (structural color), sharp spectral features, non-uniform angular distributions of scattered light, and broadband manipulation of the local density of states in nano-textured scattering surfaces with deterministic aperiodic order. The biosensors can be fabricated in semiconductor, metal, low- and high-index dielectric platforms using standard nanofabrication techniques such as electron-beam lithography, ion-beam milling, etc, and can be replicated over large areas by standard nano-imprint lithography.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 25, 2012
    Assignee: Trustees of Boston University
    Inventors: Luca Dal Negro, Svetlana V. Boriskina, Fiorenzo Omenetto
  • Publication number: 20110285991
    Abstract: A label-free multiplexed sensing platform is based on light interaction with aperiodic photonic structures with an advantage of a broadband operation. Multiple-scattering-induced “fingerprinting” colorimetric signatures can be used as a transduction mechanism. Aperiodic sensing platforms can operate in the infrared to provide an overlap with spectral fingerprints of biological molecules. Miniaturized optical biosensors may be based on engineered colorimetric scattering signatures (structural color), sharp spectral features, non-uniform angular distributions of scattered light, and broadband manipulation of the local density of states in nano-textured scattering surfaces with deterministic aperiodic order. The biosensors can be fabricated in semiconductor, metal, low- and high-index dielectric platforms using standard nanofabrication techniques such as electron-beam lithography, ion-beam milling, etc, and can be replicated over large areas by standard nano-imprint lithography.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 24, 2011
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Luca Dal Negro, Svetlana V. Boriskina