Patents by Inventor Sylvia Futterer

Sylvia Futterer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8315765
    Abstract: In a method for reducing the rollover risk in vehicles, at least one state variable which characterizes the transverse dynamics of the vehicle is ascertained and is used as the basis for an intervention into the steering system and the braking system which stabilizes the vehicle. A multivariable control is carried out in which two control loops are superimposed, the first control loop being based on control of the yaw rate and the second control loop being based on control of the transverse acceleration. The steering system as well as the braking system may be adjusted via the first and second control loops.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 20, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Manfred Gerdes, Frank Niewels, Sylvia Futterer, Peter Ziegler
  • Publication number: 20090082923
    Abstract: In a method for reducing the rollover risk in vehicles, at least one state variable which characterizes the transverse dynamics of the vehicle is ascertained and is used as the basis for an intervention into the steering system and the braking system which stabilizes the vehicle. A multivariable control is carried out in which two control loops are superimposed, the first control loop being based on control of the yaw rate and the second control loop being based on control of the transverse acceleration. The steering system as well as the braking system may be adjusted via the first and second control loops.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 26, 2009
    Inventors: Manfred Gerdes, Frank Niewels, Sylvia Futterer, Peter Ziegler
  • Patent number: 7305292
    Abstract: Described is a device for stabilizing a vehicle in critical driving situations, including a vehicle dynamics control system having a control unit, including a vehicle dynamics control algorithm, and at least one actuator and an additional vehicle stability system having an associated actuator. Vehicle dynamics control may be executed in a particularly simple and trouble-free manner when the vehicle dynamics control algorithm is retrofitted with a distribution function which derives an actuating request for an actuator of the vehicle dynamics control system as well as an actuating request for at least one actuator of the vehicle stability system from a controller output variable.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: December 4, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Lohner, Ansgar Traechtler, Sylvia Futterer, Armin Verhagen, Karlheinz Frese, Manfred Gerdes, Martin Sackmann, Dietmar Martini
  • Patent number: 7277786
    Abstract: A method for controlling a braking system of a vehicle is described, in which the braking system has at least a first control unit for controlling a first braking force on at least one wheel brake of a wheel of the vehicle, and an accumulator for receiving a pressurized medium, the method including generating the first braking force by at least one of a first hydraulic component and a first pneumatic component, filling the accumulator with the medium independently of the at least one of the first hydraulic component and the first pneumatic components via a relative movement between at least one wheel and a vehicle body, and generating a second braking force at predefinable times on the at least one wheel brake as a function of the filling of the accumulator.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 2, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Hans-Peter Stumpp, Ansgar Traechtler, Sylvia Futterer, Willi Nagel, Armin Verhagen, Klaus-Michael Mayer, Peter Dominke
  • Publication number: 20050256622
    Abstract: A method and a device for influencing the handling characteristics of a vehicle, by increasing the vehicle stability and hence increasing the driving comfort for the driver of the vehicle. This is done by activating at least two systems in the vehicle, which improve the handling characteristics and thus the vehicle stability. The activation of a system occurs in a specified sequence as a function of the activation and/or of the effect of the preceding systems on the handling characteristics achieved by the activation. The sequence provided for this purpose is the initial activation of a chassis system, followed by a steering system and finally by a brake system.
    Type: Application
    Filed: March 18, 2003
    Publication date: November 17, 2005
    Inventors: Sylvia Futterer, Armin-Maria Verhagen, Karlheinz Frese, Manfred Gerdes
  • Publication number: 20050228565
    Abstract: Described is a device for stabilizing a vehicle in critical driving situations, including a vehicle dynamics control system having a control unit, including a vehicle dynamics control algorithm, and at least one actuator and an additional vehicle stability system having an associated actuator. Vehicle dynamics control may be executed in a particularly simple and trouble-free manner when the vehicle dynamics control algorithm is retrofitted with a distribution function which derives an actuating request for an actuator of the vehicle dynamics control system as well as an actuating request for at least one actuator of the vehicle stability system from a controller output variable.
    Type: Application
    Filed: April 8, 2005
    Publication date: October 13, 2005
    Inventors: Herbert Lohner, Ansgar Traechtler, Sylvia Futterer, Armin Verhagen, Karlheinz Frese, Manfred Gerdes, Martin Sackmann, Dietmar Martini
  • Publication number: 20050125132
    Abstract: A method and a device which, when a pneumatic and/or hydraulic or electromechanical braking system of a vehicle is controlled, make it possible to set a second braking force on at least one wheel brake of one wheel in a defined manner in addition to the defined setting of a first braking force. The first braking force is generated by a first control unit using first hydraulic and/or pneumatic components, whereas the second braking force is generated at predefinable times as a function of the filling of an accumulator with a pressurized medium. The accumulator is a device separated from the first hydraulic and/or pneumatic components which is preferably mounted in the proximity of the wheel brakes and which is filled via a relative movement between at least one wheel and the vehicle body. It is therefore conceivable that, with the aid of a working cylinder attached to a wheel, the accumulator is filled with volume of a medium by utilizing the relative movement between wheel and body.
    Type: Application
    Filed: October 29, 2004
    Publication date: June 9, 2005
    Inventors: Hans-Peter Stumpp, Ansgar Traechtler, Sylvia Futterer, Willi Nagel, Armin Verhagen, Klaus-Michael Mayer, Peter Dominke