Patents by Inventor Szu-Wei Lu

Szu-Wei Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153916
    Abstract: A semiconductor device includes a bottom semiconductor die including a bottom semiconductor die sidewall, a top semiconductor die bonded to the bottom semiconductor die and including a top semiconductor die sidewall, and a molding material layer formed on an upper surface of the bottom semiconductor die, on the top semiconductor die sidewall, and on the bottom semiconductor die sidewall. A method of forming a semiconductor device includes mounting a bottom semiconductor die including a bottom semiconductor die sidewall on a carrier substrate, mounting a top semiconductor die including a top semiconductor die sidewall on the bottom semiconductor die, and forming a molding material layer on an upper surface of the bottom semiconductor die, on the top semiconductor die sidewall, and on the bottom semiconductor die sidewall.
    Type: Application
    Filed: April 21, 2023
    Publication date: May 9, 2024
    Inventors: Tsung-Fu TSAI, Chen-Hua YU, Szu-Wei LU
  • Patent number: 11973005
    Abstract: A method includes bonding a first package and a second package over a package component, adhering a first Thermal Interface Material (TIM) and a second TIM over the first package and the second package, respectively, dispensing an adhesive feature on the package component, and placing a heat sink over and contacting the adhesive feature. The heat sink includes a portion over the first TIM and the second TIM. The adhesive feature is then cured.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hsun Wang, Ping-Yin Hsieh, Pu Wang, Li-Hui Cheng, Szu-Wei Lu
  • Publication number: 20240128157
    Abstract: A method includes forming a set of through-vias in a substrate, the set of through-vias partially penetrating a thickness of the substrate. First connectors are formed over the set of through-vias on a first side of the substrate. The first side of the substrate is attached to a carrier. The substrate is thinned from the second side to expose the set of through-vias. Second connectors are formed over the set of through-vias on the second side of the substrate. A device die is bonded to the second connectors. The substrate is singulated into multiple packages.
    Type: Application
    Filed: July 25, 2022
    Publication date: April 18, 2024
    Inventors: Chin-Chuan Chang, Szu-Wei Lu, Chen-Hua Yu
  • Publication number: 20240120207
    Abstract: A semiconductor package includes a die having a plurality of devices over a first substrate, where the first substrate includes a dopant at a first concentration and the first substrate has a first width along a horizontal direction. The semiconductor package further includes a second substrate fused with the first substrate, where the second substrate includes the dopant at a second concentration greater than the first concentration.
    Type: Application
    Filed: February 15, 2023
    Publication date: April 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lung-Kai Mao, Wen-Hsiung Lu, Pei-Wei Lee, Szu-Hsien Lee, Chieh-Ning Feng
  • Patent number: 11955459
    Abstract: A package structure is provided. The package structure includes a first die and a second die, a dielectric layer, a bridge, an encapsulant, and a redistribution layer structure. The dielectric layer is disposed on the first die and the second die. The bridge is electrically connected to the first die and the second die, wherein the dielectric layer is spaced apart from the bridge. The encapsulant is disposed on the dielectric layer and laterally encapsulating the bridge. The redistribution layer structure is disposed over the encapsulant and the bridge. A top surface of the bridge is in contact with the RDL structure.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Hang Liao, Chih-Wei Wu, Jing-Cheng Lin, Szu-Wei Lu, Ying-Ching Shih
  • Publication number: 20240114703
    Abstract: A package structure and a formation method are provided. The method includes providing a semiconductor substrate and bonding a first chip structure on the semiconductor substrate through metal-to-metal bonding and dielectric-to-dielectric bonding. The method also includes bonding a second chip structure over the semiconductor substrate through solder-containing bonding structures. The method further includes forming a protective layer surrounding the second chip structure. A portion of the protective layer is between the semiconductor substrate and a bottom of the second chip structure.
    Type: Application
    Filed: February 2, 2023
    Publication date: April 4, 2024
    Inventors: Tsung-Fu TSAI, Szu-Wei LU, Shih-Peng TAI, Chen-Hua YU
  • Patent number: 11948930
    Abstract: A method includes forming a set of through-vias in a substrate, the set of through-vias partially penetrating a thickness of the substrate. First connectors are formed over the set of through-vias on a first side of the substrate. The first side of the substrate is attached to a carrier. The substrate is thinned from the second side to expose the set of through-vias. Second connectors are formed over the set of through-vias on the second side of the substrate. A device die is bonded to the second connectors. The substrate is singulated into multiple packages.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Chuan Chang, Szu-Wei Lu, Chen-Hua Yu
  • Patent number: 11948896
    Abstract: A package structure is provided. The package structure includes a through substrate via structure, a first stacked die package structure, an underfill layer, and a package layer. The through substrate via structure is formed over a substrate. The first stacked die package structure is over the through substrate via structure, wherein the first stacked die package structure comprises a plurality of memory dies. The underfill layer is over the first stacked die package structure. the package layer is over the underfill layer, wherein the package layer has a protruding portion that extends below a top surface of the through substrate via structure.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Kung-Chen Yeh, I-Ting Huang, Shih-Ting Lin, Szu-Wei Lu
  • Publication number: 20240105629
    Abstract: A semiconductor package includes a first semiconductor die, a second semiconductor die, a semiconductor bridge, an integrated passive device, a first redistribution layer, and connective terminals. The second semiconductor die is disposed beside the first semiconductor die. The semiconductor bridge electrically connects the first semiconductor die with the second semiconductor die. The integrated passive device is electrically connected to the first semiconductor die. The first redistribution layer is disposed over the semiconductor bridge. The connective terminals are disposed on the first redistribution layer, on an opposite side with respect to the semiconductor bridge. The first redistribution layer is interposed between the integrated passive device and the connective terminals.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 28, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hsuan Tsai, Chin-Chuan Chang, Szu-Wei Lu, Tsung-Fu Tsai
  • Patent number: 11942403
    Abstract: In an embodiment, a package includes: an interposer having a first side; a first integrated circuit device attached to the first side of the interposer; a second integrated circuit device attached to the first side of the interposer; an underfill disposed beneath the first integrated circuit device and the second integrated circuit device; and an encapsulant disposed around the first integrated circuit device and the second integrated circuit device, a first portion of the encapsulant extending through the underfill, the first portion of the encapsulant physically disposed between the first integrated circuit device and the second integrated circuit device, the first portion of the encapsulant being planar with edges of the underfill and edges of the first and second integrated circuit devices.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chien Pan, Li-Hui Cheng, Chin-Fu Kao, Szu-Wei Lu
  • Patent number: 11935842
    Abstract: Warpage and breakage of integrated circuit substrates is reduced by compensating for the stress imposed on the substrate by thin films formed on a surface of the substrate. Particularly advantageous for substrates having a thickness substantially less than about 150 ?m, a stress-tuning layer is formed on a surface of the substrate to substantially offset or balance stress in the substrate which would otherwise cause the substrate to bend. The substrate includes a plurality of bonding pads on a first surface for electrical connection to other component.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Clinton Chao, Szu-Wei Lu
  • Publication number: 20240087964
    Abstract: An apparatus for detecting an endpoint of a grinding process includes a connecting device, a timer and a controller. The connecting device is connected to a sensor that periodically senses an interface of a reconstructed wafer comprising a plurality of dies of at least two types to generate a thickness signal comprising thicknesses from a surface of an insulating layer of the reconstructed wafer to the interface of the reconstructed wafer. The timer is configured to generate a clock signal having a plurality of pulses with a time interval. The controller is coupled to the sensor and the timer, and configured to filter the thickness signal according to the clock signal to output a thickness extremum among the thicknesses in the thickness signal within each time interval, wherein the thickness signal after the filtering is used to determine the endpoint of the grinding process being performed on the reconstructed wafer.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chao Mao, Chin-Chuan Chang, Szu-Wei Lu
  • Patent number: 11929261
    Abstract: A method includes forming a set of through-vias in a substrate, the set of through-vias partially penetrating a thickness of the substrate. First connectors are formed over the set of through-vias on a first side of the substrate. The substrate is singulated to form dies. The first side of the dies are attached to a carrier. The dies are thinned from the second side to expose the set of through-vias. Second connectors are formed over the set of through-vias on the second side of the dies. A device die is bonded to the second connectors. The dies and device dies are singulated into multiple packages.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Szu-Wei Lu, Chen-Hua Yu
  • Publication number: 20240077669
    Abstract: An embodiment is a package including a package substrate and a package component bonded to the package substrate, the package component including an interposer, an optical die bonded to the interposer, the optical die including an optical coupler, an integrated circuit die bonded to the interposer adjacent the optical die, a lens adapter adhered to the optical die with a first optical glue, a mirror adhered to the lens adapter with a second optical glue, the mirror being aligned with the optical coupler of the optical die, and an optical fiber on the lens adapter, a first end of the optical fiber facing the mirror, the optical fiber being configured such that an optical data path extends from the first end of the optical fiber through the mirror, the second optical glue, the lens adapter, and the first optical glue to the optical coupler of the optical die.
    Type: Application
    Filed: February 17, 2023
    Publication date: March 7, 2024
    Inventors: Chen-Hua Yu, Jiun Yi Wu, Szu-Wei Lu
  • Publication number: 20240079399
    Abstract: A package structure and methods of forming a package structure are provided. The package structure includes a first die, a second die, a wall structure and an encapsulant. The second die is electrically bonded to the first die. The wall structure is located aside the second die and on the first die. The wall structure is in contact with the first die and a hole is defined within the wall structure for accommodating an optical element. The encapsulant laterally encapsulates the second die and the wall structure.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chien Pan, Chin-Fu Kao, Li-Hui Cheng, Szu-Wei Lu
  • Patent number: 11923259
    Abstract: A package structure includes a package substrate, a first semiconductor package and a second semiconductor package, an underfill material, a gap filling structure and a heat dissipation structure. The first semiconductor package and the second semiconductor package are electrically bonded to the package substrate. The underfill material is disposed to fill a first space between the first semiconductor package and the package substrate and a second space between the second semiconductor package and the package substrate. The gap filling structure is disposed over the package substrate and in a first gap laterally between the first semiconductor package and the second semiconductor package. The heat dissipation structure is disposed on the package substrate and attached to the first semiconductor package and the second semiconductor package through a thermal conductive layer.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pu Wang, Li-Hui Cheng, Szu-Wei Lu, Tsung-Fu Tsai
  • Publication number: 20240071982
    Abstract: In an embodiment, a device bonding apparatus is provided. The device bonding apparatus includes a first process station configured to receive a wafer; a first bond head configured to carry a die to the wafer, wherein the first bonding head includes a first rigid body and a vacuum channel in the first rigid body for providing an attaching force for carrying the die to the wafer; and a second bond head configured to press the die against the wafer, the second bond head including a second rigid body and an elastic head disposed over the second rigid body for pressing the die, the elastic head having a center portion and an edge portion surrounding the center portion, the center portion of the elastic head having a first thickness, the edge portion of the elastic head having a second thickness, the second thickness being greater than the second thickness.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Yi-Jung Chen, Tsung-Fu Tsai, Szu-Wei Lu
  • Publication number: 20240071849
    Abstract: A semiconductor package including one or more dam structures and the method of forming are provided. A semiconductor package may include an interposer, a semiconductor die bonded to a first side of the interposer, an encapsulant on the first side of the interposer encircling the semiconductor die, a substrate bonded to the a second side of the interposer, an underfill between the interposer and the substrate, and one or more of dam structures on the substrate. The one or more dam structures may be disposed adjacent respective corners of the interposer and may be in direct contact with the underfill. The coefficient of thermal expansion of the one or more of dam structures may be smaller than the coefficient of thermal expansion of the underfill.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 29, 2024
    Inventors: Jian-You Chen, Kuan-Yu Huang, Li-Chung Kuo, Chen-Hsuan Tsai, Kung-Chen Yeh, Hsien-Ju Tsou, Ying-Ching Shih, Szu-Wei Lu
  • Publication number: 20240063043
    Abstract: A method for forming a semiconductor device is provided. The method includes providing a wafer with multiple semiconductor dies on the adhesive film held by the frame element. The method also includes lifting a semiconductor die up from the wafer using an ejector element. The method includes picking up the semiconductor die with a collector element. The method further includes flip-chipping the semiconductor die with the collector element, and picking up the semiconductor die from the collector element using a bond-head element. In addition, the method includes measuring the warpage of the semiconductor die on the bond-head element using a sensor, then bonding the semiconductor die to a carrier using the bond-head element.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 22, 2024
    Inventors: Yi-Jung CHEN, Tsung-Fu TSAI, Szu-Wei LU, Chung-Shi LIU
  • Publication number: 20240063204
    Abstract: Integrated circuit package structures and methods of forming integrated circuit package structures are discussed. An integrated circuit package structure, in accordance with some embodiments, includes an integrated circuit package substrate with a heterogeneous bonding scheme that includes conductive pillars for bonding semiconductor devices to as well as a region including conductive connectors embedded in a dielectric for bonding additional semiconductor devices.
    Type: Application
    Filed: August 22, 2022
    Publication date: February 22, 2024
    Inventors: Yi-Jung Chen, Tsung-Fu Tsai, Szu-Wei Lu, Chung-Shi Liu