Patents by Inventor T. R. Viswanathan

T. R. Viswanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6515605
    Abstract: A wireless base station having an improved DAC operable at higher speed than heretofore achievable which exploits the sigma-delta principle in a different way. More particularly, the invention comprises a base station 300 that implement a digital-to-analog conversion circuit (105) including a storage means (110), such as a read only memory, for storing delta-sigma analog sequences corresponding to all possible values of a digital input (106) coupled to a plurality of one-bit digital to analog converters (120, 122, 124, 126). Each of the digital-to-analog converters (120, 122, 124, 126) are clocked by multi-phase clocks, such that each phase applied to each one of the digital-to-analog converters (120, 122, 124, 126) is delayed with respect to one another by the oversampling period. An summer is coupled to each digital-to-analog converter (120, 122, 124, 126) for summing each output from each digital-to-analog converter (120, 122, 124, 126) to generate an analog output.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: February 4, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Carl M. Panasik, T. R. Viswanathan
  • Publication number: 20020171571
    Abstract: A PC card and corresponding WLAN system having an improved DAC operable at higher speed than heretofore achievable which exploits the sigma-delta principle in a different way. More particularly, the invention comprises a PC card (302) and corresponding WLAN system (300) that implement a digital-to-analog conversion circuit (105) including a storage means (110), such as a read only memory, for storing delta-sigma analog sequences corresponding to all possible values of a digital input (106) coupled to a plurality of one-bit digital to analog converters (120, 122, 124, 126). Each of the digital-to-analog converters (120, 122, 124, 126) are clocked by multi-phase clocks, such that each phase applied to each one of the digital-to-analog converters (120, 122, 124, 126) is delayed with respect to one another by the oversampling period.
    Type: Application
    Filed: April 30, 2001
    Publication date: November 21, 2002
    Inventors: Carl M. Panasik, T.R. Viswanathan
  • Publication number: 20020173282
    Abstract: A wireless communications apparatus and corresponding system having an improved DAC operable at higher speed than heretofore achievable which exploits the sigma-delta principle in a different way. More particularly, the invention comprises a wireless user terminal (302) and corresponding system (300) that implement a digital-to-analog conversion circuit (105) including a storage means (110), such as a read only memory, for storing delta-sigma analog sequences corresponding to all possible values of a digital input (106) coupled to a plurality of one-bit digital to analog converters (120, 122, 124, 126). Each of the digital-to-analog converters (120, 122, 124, 126) are clocked by multi-phase clocks, such that each phase applied to each one of the digital-to-analog converters (120, 122, 124, 126) is delayed with respect to one another by the oversampling period.
    Type: Application
    Filed: April 30, 2001
    Publication date: November 21, 2002
    Inventors: Carl M. Panasik, T. R. Viswanathan
  • Publication number: 20020159417
    Abstract: A wireless base station having an improved DAC operable at higher speed than heretofore achievable which exploits the sigma-delta principle in a different way. More particularly, the invention comprises a base station 300 that implement a digital-to-analog conversion circuit (105) including a storage means (110), such as a read only memory, for storing delta-sigma analog sequences corresponding to all possible values of a digital input (106) coupled to a plurality of one-bit digital to analog converters (120, 122, 124, 126). Each of the digital-to-analog converters (120, 122, 124, 126) are clocked by multi-phase clocks, such that each phase applied to each one of the digital-to-analog converters (120, 122, 124, 126) is delayed with respect to one another by the oversampling period. An summer is coupled to each digital-to-analog converter (120, 122, 124, 126) for summing each output from each digital-to-analog converter (120, 122, 124, 126) to generate an analog output.
    Type: Application
    Filed: April 30, 2001
    Publication date: October 31, 2002
    Inventors: Carl M. Panasik, T.R. Viswanathan
  • Publication number: 20020158784
    Abstract: A wireless local loop apparatus and corresponding system having an improved DAC operable at higher speed than heretofore achievable which exploits the sigma-delta principle in a different way. More particularly, the invention comprises a wireless local loop terminal (302) and corresponding system (300) that implement a digital-to-analog conversion circuit (105) including a storage means (110), such as a read only memory, for storing delta-sigma analog sequences corresponding to all possible values of a digital input (106) coupled to a plurality of one-bit digital to analog converters (120, 122, 124, 126). Each of the digital-to-analog converters (120, 122, 124, 126) are clocked by multi-phase clocks, such that each phase applied to each one of the digital-to-analog converters (120, 122, 124, 126) is delayed with respect to one another by the oversampling period.
    Type: Application
    Filed: April 30, 2001
    Publication date: October 31, 2002
    Inventors: Carl M. Panasik, T. R. Viswanathan
  • Patent number: 6404262
    Abstract: An exemplary electronic circuit of the present include first and second buffers 34 and 38, which are preferably unity gain buffers. A first switch 36 (e.g., a NMOS transistor or a CMOS transmission gate) is coupled between the output of the first buffer 34 and the first terminal of a capacitor 40. The input of the second buffer 38 is also coupled to the first terminal of the capacitor 40. A second switch 42 is coupled between the second terminal of the capacitor 40 and a first voltage node Va and a third switch 44 is coupled between the second terminal of the capacitor 40 and a second voltage node Vb. This circuit can be used as an integrator in a number of applications.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: June 11, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnaswamy Nagaraj, T. R. Viswanathan
  • Publication number: 20020063645
    Abstract: A digital cellular base station (22) having minimum hardware requirements readily adapted to support high speed communication is disclosed herein. It includes a digital signal processor base band processor and modulator (24), a high-speed, high resolution digital-to-analog converter (26), a RF modulator (30) and an antenna (32). An input signal couples to the digital signal base-band processing modulator (24) for processing. The high-speed, high resolution digital-to-analog converter (26) couples to receive the processed signal and converts the signal into an analog one. The high-speed, high resolution digital-to-analog converter (DAC) (26) has off-line sigma delta conversion and storage which enables it to directly generat a modulated signal at an intermediate frequency, typically on the order of 100 MHz. Incorporation of DAC (26) reduces the amount of hardware necessary for the cellular base-station (22).
    Type: Application
    Filed: November 29, 2000
    Publication date: May 30, 2002
    Inventor: T. R. Viswanathan
  • Publication number: 20020063649
    Abstract: A digital-to-analog conversion circuit (105) includes a storage means (110), such as a read only memory, for storing delta-sigma analog sequences corresponding to all possible values of a digital input (106) coupled to a plurality of one-bit digital to analog converters (120, 122, 124, 126). Each of the digital-to-analog converters (120, 122, 124, 126) are clocked by multi-phase clocks, such that each phase applied to each one of the digital-to-analog converters (120, 122, 124, 126) is delayed with respect to one another by the oversampling period. An summer is coupled to each digital-to-analog converter (120, 122, 124, 126) for summing each output from each digital-to-analog converter (120, 122, 124, 126) to generate an analog output. Hereby, the digital-to-analog conversion circuit (105) according to the invention emulates a delta-sigma digital-to-analog converter having both high speed and high resolution.
    Type: Application
    Filed: November 29, 2000
    Publication date: May 30, 2002
    Inventor: T. R. Viswanathan
  • Patent number: 6232907
    Abstract: An A/D converter which includes a sample-and-hold circuit having an input and an output, a zero-crossing detector having an input coupled to the output of the sample-and-hold circuit and having an output indicative of a change in polarity of an input signal thereto and a polarity reverser having an input coupled to the output of the sample-and-hold circuit, a control terminal coupled to and under control of the output of the zero-crossing detector and an output terminal. A bank of comparators, preferably in a first and second array, each have inputs respectively coupled to the output of the polarity reverser, each comparator having an output. An encoder preferably having first and second portions is coupled to the output of the comparator, the first array preferably coupled to the first encoder portion and the second array preferably coupled to the second encoder portion, the encoder having an output.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: May 15, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnaswamy Nagaraj, T. R. Viswanathan
  • Patent number: 6188345
    Abstract: A high speed sigma-delta A/D converter for a sequence of analog samples xn (n=0,1,2, . . . N−1) has an input, a plurality N−1 of phase clocks &PHgr;n, a plurality of sample-hold circuits 40n, a plurality N−1 of circuit stages, and a D/A converter. The input receives the analog samples xn. The sample-hold circuits 40n are coupled to the input and each responds to a respective phase clock &PHgr;n to sample and hold a corresponding analog sample Xn. Each circuit stage n has a summer 42n and a quantizer 44n. The summer has (i) a data input receiving a data signal (xn) from a corresponding sample-hold circuit 40n, (ii) a prior sum signal (wn−1) input, and (iii) a prior quantized signal (yn−1) negative input. The summer 42n produces a sum signal (wn=xn+wn−−Yn−1) at a summer output. The quantizer 44n is coupled to the summer's output for quantizing the sum signal wn into a quantized sum signal yn.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: February 13, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Charles L. McDonald, T. R. Viswanathan, Krishnaswamy Nagaraj