Patents by Inventor Ta-Hua Yu

Ta-Hua Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9939557
    Abstract: A composite having (a) a substrate that has opposing first and second surfaces, the substrate being at least 90% transmissive in visible light and has less than 5% haze, (b) a nanostructured article including a matrix and a nanoscale dispersed phase and having a random nanostructured anisotropic surface; and (c) an optically clear adhesive disposed on the second surface of the substrate.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: April 10, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Moses M. David, Andrew K. Hartzell, Timothy J. Hebrink, Ta-Hua Yu, Jun-Ying Zhang, Kalc C. Vang, Ming Cheng
  • Publication number: 20180093008
    Abstract: An article having anti-microbial effect is provided. The article includes an occlusive layer, an absorbent layer over-laying the occlusive layer, and a metal oxide layer overlaying the absorbent layer, wherein the metal oxide layer comprises a metal oxide and wherein the metal oxide layer comprises less than 40 wt. % non-oxidized metal.
    Type: Application
    Filed: May 5, 2016
    Publication date: April 5, 2018
    Inventors: Ta-Hua Yu, Junkang Jacob Liu, Narina Y. Stepanova, Badri Veeraraghavan, Moses M. David
  • Patent number: 9908772
    Abstract: A nanostructured article comprises a matrix and a nanoscale dispersed phase. The nanostructured article has a random nanostructured anisotropic surface.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 6, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Moses M. David, Andrew K. Hartzell, Timothy J. Hebrink, Ta-Hua Yu, Jun-Ying Zhang
  • Patent number: 9908317
    Abstract: A microporous battery separator is provided having a first co-extruded multilayered portion and a second co-extruded multilayered portion. The two portions are bonded together. In a preferred embodiment, the battery separator has two substantially identical multilayered portions bonded together face-to-face. Each of the two multilayered portions has at least one strength layer and at least one shutdown layer. Methods for making the battery separators are also provided. Preferably, a tubular multilayered film is extruded, and collapsed onto itself to form a multilayered battery separator precursor. The precursor is then bonded and annealed before it is stretched to form a microporous multilayer battery separator.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: March 6, 2018
    Assignee: Celgard, LLC
    Inventors: Ronald W. Call, Donald K. Simmons, Ta-Hua Yu
  • Publication number: 20170303393
    Abstract: The present disclosure provides an article having a substrate having a first nanostructured surface and an opposing second surface; and a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces. The micropattern may have an open area fraction greater than 80%. The traces of the conductor micropattern may have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. The nanostructured surface may include nanofeatures having a height from 50 to 750 nanometers, a width from 15 to 200 nanometers, and a lateral spacing from 5 to 500 nanometers. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers. They also find use in antennas and for EMI shields.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu
  • Patent number: 9782955
    Abstract: Touch sensor layer constructions and methods of making such constructions are described. More particularly, touch sensor constructions that utilize patterned conductive layers that may be applied by a sacrificial release liner, eliminating one or more glass and/or film substrate from touch sensor stacks, and methods of making such constructions are described.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: October 10, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael W. Dolezal, Robert R. Kieschke, Ta-Hua Yu, Mark A. Roehrig, Pradnya V. Nagarkar, Matthew S. Stay, Shawn C. Dodds, Bernard O. Geaghan
  • Patent number: 9736928
    Abstract: The present disclosure provides an article having (a) a substrate having a first nanostructured surface that is antireflective when exposed to air and an opposing second surface; and (b) a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces defining a plurality of open area cells. The micropattern has an open area fraction greater than 80% and a uniform distribution of trace orientation. The traces of the conductor micropattern have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. Each of the traces has a width from 0.5 to 10 micrometer. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers. They also find use in antennas and for EMI shields.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: August 15, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu, Stephen P. Maki
  • Publication number: 20170221680
    Abstract: Nanostructured material exhibiting a random anisotropic nanostructured surface, and exhibiting an average reflection at 60 degrees off angle less than 1 percent. The nanostructured materials are useful, for example, for optical and optoelectronic devices, displays, solar, light sensors, eye wear, camera lens, and glazing.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Inventors: Ta-Hua Yu, Moses M. David, Abdujabar K. Dire, Albert I. Everaerts, William Blake Kolb, Todd M. Sandman, Shunsuke Suzuki, Scott A. Walker
  • Publication number: 20170173535
    Abstract: Articles are described including a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and a first silica layer directly attached to the first major surface of the first microfiltration membrane layer. The first silica layer includes a polymeric binder and acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. A method of making an article is also described, including providing a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and forming a first silica layer on the first major surface.
    Type: Application
    Filed: April 3, 2015
    Publication date: June 22, 2017
    Inventors: Xuan Jiang, Kuan-Yin Lin, Michelle M Mok, Naiyong Jing, Derek J. Dehn, Richard J. Pokorny, Ta-Hua Yu
  • Patent number: 9651715
    Abstract: Nanostructured material exhibiting a random anisotropic nanostructured surface, and exhibiting an average reflection at 60 degrees off angle less than 1 percent. The nanostructured materials are useful, for example, for optical and optoelectronic devices, displays, solar, light sensors, eye wear, camera lens, and glazing.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 16, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ta-Hua Yu, Moses M. David, Abdujabar K. Dire, Albert I. Everaerts, William Blake Kolb, Todd M. Sandman, Shunsuke Suzuki, Scott A. Walker
  • Publication number: 20170097174
    Abstract: Broadband reflectors include a UV-reflective multilayer optical film and a VIS/IR-reflective layer. In various embodiments, the VIS/IR reflective layer may be a reflective metal layer or a multilayer optical film. Concentrated solar power systems and methods of harnessing solar energy using the broadband reflectors and optionally comprising a celestial tracking mechanism are also disclosed.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Inventors: Timothy J. Hebrink, Susannah C. Clear, Laurence R. Gilbert, Michael F. Weber, Ta-hua Yu, Daniel T. Chen, Audrey A. Sherman
  • Publication number: 20170067150
    Abstract: A method of making a nanostructure and nanostructured articles by depositing a layer to a major surface of a substrate by plasma chemical vapor deposition from a gaseous mixture while substantially simultaneously etching the surface with a reactive species. The method includes providing a substrate; mixing a first gaseous species capable of depositing a layer onto the substrate when formed into a plasma, with a second gaseous species capable of etching the substrate when formed into a plasma, thereby forming a gaseous mixture; forming the gaseous mixture into a plasma; and exposing a surface of the substrate to the plasma, wherein the surface is etched and a layer is deposited on at least a portion of the etched surface substantially simultaneously, thereby forming the nanostructure. The substrate can be a (co)polymeric material, an inorganic material, an alloy, a solid solution, or a combination thereof.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Moses M. David, Ta-Hua Yu, Daniel S. Bates, Jayshree Seth, Michael S. Berger, Carsten Franke, Sebastian F. Zehentmaier
  • Publication number: 20170051164
    Abstract: Article comprising a substrate having a first major surface, wherein the major surface has an emissivity not greater than 0.2 and an exposed hardcoat on the first major surface, the hardcoat comprising binder, wherein the hardcoat has a thickness less than 200 nanometers and has a scratch rating of not greater than 1 as determined by the Linear Abrasion Test in the Examples. Articles described herein are useful, for example, for sun control window films having insulative properties.
    Type: Application
    Filed: April 27, 2015
    Publication date: February 23, 2017
    Inventors: Raghunath Padiyath, Naota Sugiyama, Richard J. Pokorny, Ta-Hua Yu, Gregory F. King, Stephen P. Maki, Robert R. Owings
  • Publication number: 20160370506
    Abstract: A composite having (a) a substrate that has opposing first and second surfaces, the substrate being at least 90% transmissive in visible light and has less than 5% haze, (b) a nanostructured article including a matrix and a nanoscale dispersed phase and having a random nanostructured anisotropic surface; and (c) an optically clear adhesive disposed on the second surface of the substrate.
    Type: Application
    Filed: August 3, 2016
    Publication date: December 22, 2016
    Inventors: Moses M. David, Andrew K. Hartzell, Timothy J. Hebrink, Ta-Hua Yu, Jun-Ying Zhang, Kalc C. Vang, Ming Cheng
  • Patent number: 9523516
    Abstract: Broadband reflectors include a UV-reflective multilayer optical film and a VIS/IR-reflective layer. In various embodiments, the VIS/IR reflective layer may be a reflective metal layer or a multilayer optical film. Concentrated solar power systems and methods of harnessing solar energy using the broadband reflectors and optionally comprising a celestial tracking mechanism are also disclosed.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: December 20, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Hebrink, Susannah C. Clear, Laurence R. Gilbert, Michael F. Weber, Ta-Hua Yu, Daniel Ting-Yuan Chen, Audrey A. Sherman
  • Publication number: 20160326741
    Abstract: There is provided a vacuum insulation panel envelope having a substrate, a low thermal conductivity organic layer and a low thermal conductivity inorganic stack. The low thermal conductivity inorganic stack will include low thermal conductivity non-metallic inorganic materials and/or low thermal conductivity metallic materials.
    Type: Application
    Filed: December 16, 2014
    Publication date: November 10, 2016
    Inventors: Christopher S. Lyons, Donna W. Bange, Cedric Bedoya, Paul T. Engen, Peter B. Hogerton, Joseph M. Pieper, Amy Preszler Prince, Ta-Hua Yu, Qihong Nie, Donald J. McClure
  • Publication number: 20160303838
    Abstract: A transparent multilayer assembly, including a transparent organic polymeric flexible substrate, a transparent conductive layer on the first major surface of the substrate and an antireflective layer on the second major surface of the substrate.
    Type: Application
    Filed: December 8, 2014
    Publication date: October 20, 2016
    Inventors: Wan-Chun Chen, Chun-Ming Chiu, Hui Luo, Tze Yuan Wang, Ta-Hua Yu
  • Patent number: 9435916
    Abstract: A composite having (a) a substrate that has opposing first and second surfaces, the substrate being at least 90% transmissive in visible light and has less than 5% haze, (b) a nanostructured article including a matrix and a nanoscale dispersed phase and having a random nanostructured anisotropic surface; and (c) an optically clear adhesive disposed on the second surface of the substrate.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 6, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Moses M. David, Andrew K. Hartzell, Timothy J. Hebrink, Ta-Hua Yu, Jun-Ying Zhang, Kalc C. Vang, Ming Cheng
  • Patent number: 9435924
    Abstract: Articles comprising a substrate and a first layer on a major surface thereof, wherein the first layer has a first random, nanostructured surface, and wherein the first layer has an average thickness up to 0.5 micrometer. Embodiments of the articles are useful, for example, for display applications (e.g., liquid crystal displays (LCD), light emitting diode (LED) displays, or plasma displays); light extraction; electromagnetic interference (EMI) shielding, ophthalmic lenses; face shielding lenses or films; window films; antireflection for construction applications; and, construction applications or traffic signs.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 6, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ta-Hua Yu, Moses M. David, Kalc C. Vang
  • Publication number: 20160200086
    Abstract: Touch sensor layer constructions and methods of making such constructions are described. More particularly, touch sensor constructions that utilize patterned conductive layers that may be applied by a sacrificial release liner, eliminating one or more glass and/or film substrate from touch sensor stacks, and methods of making such constructions are described.
    Type: Application
    Filed: August 13, 2014
    Publication date: July 14, 2016
    Inventors: Michael W. Dolezal, Robert R. Kieschke, Ta-Hua Yu, Mark A. Roehrig, Pradnya V. Nagarkar, Matthew S. Stay, Shawn C. Dodds, Bernard O. Geaghan