Patents by Inventor Ta-yung Yang

Ta-yung Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230246548
    Abstract: A switched capacitor voltage converter circuit for converting a first voltage to a second voltage, includes: a switched capacitor converter and a control circuit. The switched capacitor converter includes at least two capacitors, plural switches and at least one inductor. In a mode switching period wherein the switched capacitor converter switches from a present conversion mode to a next conversion mode, at least two forward switches of the plural switches operate in a unidirectional conduction mode. Each of the forward switches provides a current channel that unidirectionally flows toward the second voltage in the unidirectional conduction mode. The switched capacitor voltage converter circuit is also operable to convert the second voltage to the first voltage.
    Type: Application
    Filed: January 1, 2023
    Publication date: August 3, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Wei-Hsu Chang
  • Patent number: 11716020
    Abstract: A DC-DC power conversion system includes a resonant switched-capacitor converter and a controller. The resonant switched-capacitor converter is switched between a first state and a second state to generate an output voltage, and includes an input terminal, a resonant tank, an output capacitor, a first set of switches and a second set of switches. The input terminal is used to receive an input voltage. The output capacitor is used to generate the output voltage. The first set of switches is turned on in the first state and turned off in the second state according to a first control signal. The second set of switches is turned on in the second state and turned off in the first state according to a second control signal. The controller adjusts the first control signal and the second control signal according to the output voltage.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: August 1, 2023
    Assignee: RICHTEK TECHNOLOGY CORP.
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Publication number: 20230238875
    Abstract: A control circuit for controlling a stackable multiphase power converter includes: a synchronization terminal; a synchronization signal connected to the synchronization terminals of a plurality of the control circuits in parallel, wherein the synchronization signal includes a plurality of pulses to be successively counted as a count number; and a reset signal, configured to reset and initiate the count number; wherein the control circuit further comprises a phase-sequence number, wherein the control circuit enables a corresponding power stage circuit to generate a phase of the output power when the count number reaches the phase-sequence number.
    Type: Application
    Filed: August 21, 2022
    Publication date: July 27, 2023
    Inventors: Ta-Yung Yang, Wei-Chuan Wu, Chih-Hao Yang, Ping-Ching Huang, Li-Wen Fang
  • Publication number: 20230223843
    Abstract: A switched capacitor voltage converter circuit includes: a switched capacitor converter, a control circuit and a zero current estimation circuit. The switched capacitor converter includes at least one resonant capacitor, switches and at least one inductor. The zero current estimation circuit is coupled to the at least one inductor and/or the at least one resonant capacitor, for estimating a time point at which a first resonant current is zero during a first process and/or a time point at which a second resonant current is zero during a second process according to a voltage difference between two ends of the inductor, and/or a voltage difference between two ends of the resonant capacitor, to a generate a zero current estimation signal accordingly for generating the operation signal.
    Type: Application
    Filed: December 13, 2022
    Publication date: July 13, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang
  • Publication number: 20230216425
    Abstract: A synchronous full-bridge rectifier circuit includes: a first high-side transistor, a first low-side transistor, a second high-side transistor and a second low-side transistor which are configured to generate a DC power source from an AC power source, wherein the first high-side transistor and the first low-side transistor are coupled to a live wire of the AC power source, and the second high-side transistor and the second low-side transistor are coupled to a neutral wire of the AC power source; a first detection transistor, coupled to the live wire and configured to generate a first detection signal; and a second detection transistor, coupled to the neutral wire configured to generate a second detection signal; wherein the first low-side transistor is turned on after the body-diode of the first low-side transistor is turned on; the second low-side transistor is turned on after the body-diode of the second low-side transistor is turned on.
    Type: Application
    Filed: June 14, 2022
    Publication date: July 6, 2023
    Inventors: Ta-Yung Yang, Yu-Chang Chen
  • Publication number: 20230197730
    Abstract: A high voltage complementary metal oxide semiconductor (CMOS) device includes: a semiconductor layer, plural insulation regions, a first N-type high voltage well and a second N-type high voltage well, which are formed by one same ion implantation process, a first P-type high voltage well and a second P-type high voltage well, which are formed by one same ion implantation process, a first drift oxide region and a second oxide region, which are formed by one same etching process by etching a drift oxide layer; a first gate and a second gate, which are formed by one same etching process by etching a polysilicon layer, an N-type source and an N-type drain, and a P-type source and a P-type drain.
    Type: Application
    Filed: November 2, 2022
    Publication date: June 22, 2023
    Inventors: Wu-Te Weng, Chih-Wen Hsiung, Ta-Yung Yang
  • Publication number: 20230197725
    Abstract: An integrated structure of CMOS devices includes: a semiconductor layer, insulation regions, a first high voltage P-type well and a second high voltage P-type well, a first high voltage N-type well and a second high voltage N-type well, a first low voltage P-type well and a second low voltage P-type well, a first low voltage N-type well and a second low voltage N-type well, and eight gates. A CMOS device having an ultra high threshold voltage is formed in ultra high threshold device region; a CMOS device having a high threshold voltage is formed in high threshold device region; a CMOS device having a middle threshold voltage is formed in the middle threshold device region; and a CMOS device having a low threshold voltage is formed in the low threshold device region.
    Type: Application
    Filed: November 7, 2022
    Publication date: June 22, 2023
    Inventors: Wu-Te Weng, Chih-Wen Hsiung, Ta-Yung Yang
  • Patent number: 11682966
    Abstract: A switched capacitor converter circuit includes: plural capacitors and plural switches which periodically switch the coupling relationships of the plural capacitors. During a first period, the switches control at least two of the capacitors to be electrically connected in series between the first power and the second power, and control a first capacitor of the capacitors to be electrically connected in parallel to the second power. During a second period, the switches control at least two of the capacitors to be electrically connected in series between the second power and a ground voltage level, and control a second capacitor of the capacitors to be electrically connected in parallel with the second power, thereby executing power conversion between the first power and the second power.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: June 20, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Publication number: 20230178438
    Abstract: An integration manufacturing method of a depletion high voltage NMOS device and a depletion low voltage NMOS device includes: providing a substrate; forming a semiconductor layer on the substrate; forming insulation regions on the semiconductor layer; forming an N-type well in the depletion high voltage NMOS device region; forming a high voltage P-type well in the semiconductor layer, wherein the N-type well and the high voltage P-type well are in contact with each other in a channel direction; forming an oxide layer on the semiconductor layer after the N-type well and the high voltage P-type well formed; forming a low voltage P-type well; and forming an N-type high voltage channel region and an N-type low voltage channel region, such that each of the depletion high voltage NMOS device and the depletion low voltage NMOS device is turned ON when a gate-source voltage thereof is zero voltage.
    Type: Application
    Filed: November 5, 2022
    Publication date: June 8, 2023
    Inventors: Wu-Te Weng, Chih-Wen Hsiung, Ta-Yung Yang
  • Publication number: 20230179093
    Abstract: A switched capacitor voltage converter circuit includes: a switched capacitor converter and a control circuit. In a charging process of a resonant operation mode, the switches in the switched capacitor converter operate to form a series connection of at least one capacitor and an inductor between a first voltage and a second voltage, as a charging path. In a discharging process of the resonant operation mode, the switches operate to form a series connection of each capacitor and the inductor between the second voltage and a ground level, thus forming plural discharging paths simultaneously or sequentially. In an inductor switching mode, the switches operate to couple one end of the inductor to the first voltage or the ground level alternatingly. The control circuit decides to operate in the resonant operation mode or the inductor switching mode according to the first voltage, thereby maintaining the second voltage within a predetermined range.
    Type: Application
    Filed: October 25, 2022
    Publication date: June 8, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang
  • Publication number: 20230178648
    Abstract: An NMOS half-bridge power device includes: a semiconductor layer, a plurality of insulation regions, a first N-type high voltage well and a second N-type high voltage well, which are formed by one same ion implantation process, a first P-type high voltage well and a second P-type high voltage well, which are formed by one same ion implantation process, a first drift oxide region and a second drift oxide region, which are formed by one same etch process including etching a drift oxide layer; a first gate and a second gate, which are formed by one same etch process including etching a poly silicon layer, a first P-type body region and a second P-type body region, which are formed by one same ion implantation process, a first N-type source and a first N-type drain, and a second N-type source and a second N-type drain.
    Type: Application
    Filed: November 9, 2022
    Publication date: June 8, 2023
    Inventors: Chih-Wen Hsiung, Wu-Te Weng, Ta-Yung Yang
  • Patent number: 11671002
    Abstract: A resonant switching power converter includes: plural capacitors; plural switches; at least one charging inductor; at least one discharging inductor; a controller which generates a charging operation signal and at least one discharging operation signal; and at least one zero current detection circuit which detects a charging resonant current flowing through the charging inductor in a charging process and/or detect a discharging resonant current flowing through the discharging inductor in a discharging process. When detecting that a level of the charging resonant current or a level of the discharging resonant current is zero, the zero current detection circuit generates at least one zero current detection signal which is sent to the controller. The controller determines start time points and end time points of the charging process and the discharging process according to the zero current detection signal. There can be plural discharging processes.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: June 6, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuo-Chi Liu, Chung-Lung Pai, Ta-Yung Yang
  • Publication number: 20230170262
    Abstract: An integration manufacturing method of a high voltage device and a low voltage device includes: providing a substrate; forming a semiconductor layer on the substrate; forming insulation regions on the semiconductor layer, for defining a high voltage device region and a low voltage device region; forming a first high voltage well in the high voltage device region; forming a second high voltage well in the semiconductor layer, wherein the first high voltage well and the second high voltage well are in contact with each other in a channel direction; forming an oxide layer on the semiconductor layer, wherein the oxide layer overlays the high voltage device region and the low voltage device region; and forming a first low voltage well in the low voltage device region in the semiconductor layer.
    Type: Application
    Filed: July 6, 2022
    Publication date: June 1, 2023
    Inventors: Chih-Wen Hsiung, Wu-Te Weng, Ta-Yung Yang
  • Patent number: 11646654
    Abstract: A resonant switching power converter includes: capacitors; switches; at least one charging inductor; at least one discharging inductor; a controller generating a charging operation signal corresponding to charging process and discharging operation signals corresponding to discharging processes, to operate the switches to switch electrical connection relationships of the capacitors. In the charging process, the controller controls the switches via the charging operation signal, so that a series connection of the capacitors and the charging inductor is formed between the input voltage and the output voltage, which forms a charging path. In the discharging processes, the controller controls the switches via the discharging operation signals, so that a series connection of one of the capacitors and the discharging inductor is formed between the output voltage and a ground voltage level, to form plural discharging paths at different periods in a sequential order.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: May 9, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Patent number: 11601048
    Abstract: A resonant switching power converter includes: capacitors, switches, at least one charging inductor, at least one discharging inductor and a pre-charging circuit. The pre-charging circuit controls a first switch of the switches when the resonant switching power converter operates in a pre-charging mode, to control an electrical connection relationship between the input voltage and a first capacitor of the capacitors and to control other capacitors of the capacitors, thus controlling the capacitors to be connected in parallel to one another or to be connected in series to one another, so that when a voltage drop across the first capacitor is lower than a predetermined voltage, the voltage drop across each capacitor is charged to the predetermined voltage. After operating in the pre-charging mode, the resonant switching power converter subsequently operates in a resonant voltage conversion mode, to thereby convert an input voltage to an output voltage.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: March 7, 2023
    Assignee: RICHTEK TECHNOLOGY CORPOATION
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Patent number: 11581797
    Abstract: A multiple output universal serial bus travel adaptor includes: at least one AC-DC converter for converting an AC power to a first DC power; at least one DC-DC converter for providing a second DC power according to the first DC power; plural switches which are coupled to the AC-DC converter and/or the DC-DC converter to provide the first DC power or the second DC power to corresponding connectors according to operation signals; and a protocol controller configured to generate the operation signals according to at least one of the following parameters: a) the types of the connectors; b) whether there is a mobile device connected with the connectors; c) a first command from the mobile device; d) the power consumed by the mobile devices; e) the currents flowing through the connectors; and f) the voltages at the connectors.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 14, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Wei-Hsu Chang, Shih-Jen Yang, Yi-Wei Lee, Ta-Yung Yang
  • Publication number: 20230028873
    Abstract: A switched capacitor voltage converter circuit includes: a switched capacitor converter and a control circuit; wherein the control circuit adjusts operation frequencies and/or duty ratios of operation signals which control switches of the switched capacitor converter, so as to adjust a ratio of a first voltage to a second voltage to a predetermined ratio. When the control circuit decreases the duty ratios of the operation signals, if a part of the switches of the switched capacitor converter are turned ON, an inductor current flowing toward the second voltage is in a first state; if the inductor current continues to flow via a current freewheeling path, the inductor current flowing toward the second voltage becomes in a second state. A corresponding inductor is thereby switched between the first state and the second state to perform inductive power conversion.
    Type: Application
    Filed: June 11, 2022
    Publication date: January 26, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Patent number: 11552547
    Abstract: A resonant switching power converter includes: at least one capacitor; switches coupled to the at least one capacitor; at least one charging inductor; at least one discharging inductor; and a zero current estimation circuit. The switches switch electrical connection relationships of capacitors according to an operation signal. The zero current estimation circuit estimates a time point at which a charging resonant current is zero during a charging process and/or estimate a time point at which a discharging resonant current is zero during at least one discharging process according to voltage differences across two ends of the charging inductor and/or the discharging inductor, so as to correspondingly generate a zero current estimation signal. The zero current estimation signal is adopted to generate the operation signal.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: January 10, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Patent number: 11545908
    Abstract: A flyback power converter circuit includes a transformer, a blocking switch, a primary side switch, a primary side controller circuit and a secondary side controller circuit. The transformer is coupled between an input voltage and an internal output voltage in an isolated manner. The blocking switch controls the electric connection between the internal output voltage and an external output voltage. In a standby mode, the internal output voltage is regulated to a standby voltage, and the blocking switch is controlled to be OFF; in an operation mode, the internal output voltage is regulated to an operating voltage, and the blocking switch is controlled to be ON, such that the external output voltage has the operating voltage. The standby voltage is smaller than the operating voltage, so that the power consumption of the flyback power converter circuit is reduced in the standby mode.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: January 3, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Wei-Hsu Chang, Kun-Yu Lin, Tzu-Chen Lin, Ta-Yung Yang
  • Publication number: 20220407336
    Abstract: A charging control method includes: converting an input power to a DC power; receiving the DC power by a detachable cable to generate a bus power; converting the bus power to a charging power for charging a battery in a charging period; and adjusting the DC power and/or the charging power to track a maximum of a power conversion efficiency; wherein the power conversion efficiency includes one of the following: an input power conversion efficiency, which is a conversion efficiency of converting the input power to the charging power; a DC power conversion efficiency, which is a conversion efficiency of converting the DC power to the charging power; or a bus power conversion efficiency, which is a conversion efficiency of converting the bus power to the charging power.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 22, 2022
    Inventors: Wei-Hsu Chang, Ta-Yung Yang