Patents by Inventor Tadamitsu Kanekiyo

Tadamitsu Kanekiyo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456183
    Abstract: Provided is a plasma processing method for selectively removing, after plasma etching using a mask having an amorphous carbon film containing boron, the amorphous carbon film using plasma from a silicon nitride film, a silicon oxide film or a tungsten film. The plasma processing method includes a removing step of removing the amorphous carbon film using plasma generated by mixed gas of O2 gas and CH3F gas, or CH2F2 gas.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: September 27, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toru Ito, Masahito Mori, Tadamitsu Kanekiyo
  • Publication number: 20200043744
    Abstract: Provided is a plasma processing method for selectively removing, after plasma etching using a mask having an amorphous carbon film containing boron, the amorphous carbon film using plasma from a silicon nitride film, a silicon oxide film or a tungsten film. The plasma processing method includes a removing step of removing the amorphous carbon film using plasma generated by mixed gas of O2 gas and CH3F gas, or CH2F2 gas.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Inventors: Toru ITO, Masahito MORI, Tadamitsu KANEKIYO
  • Publication number: 20160079055
    Abstract: A sample cleaning apparatus includes a vibrating unit which ultrasonically vibrates a sample while the sample is mounted and held on a sample stage arranged in a processing chamber, the vibrating unit including: a dielectric film which is arranged on the sample stage and above which the sample is mounted; electrodes which are arranged adjacent to each other in the dielectric film; and a radio frequency power supply which supplies radio frequency power at frequencies in a prescribed range to the electrodes while the sample is hold on the sample stage; and a gas supply unit which forms a gas flow in a direction along a surface of the sample, so that particles are expelled.
    Type: Application
    Filed: February 19, 2015
    Publication date: March 17, 2016
    Inventors: Naoyuki KOFUJI, Tadamitsu KANEKIYO, Kazunori SHINODA, Junichi TANAKA
  • Publication number: 20160079073
    Abstract: A plasma processing method includes: a first step of introducing a gas having reactivity with a film to be processed disposed in advance on a top surface of a wafer into a processing chamber to form an adhesion layer on the film; a second step of expelling a part of the gas remaining in the processing chamber while supply of the gas having reactivity is stopped; a third step of introducing a rare gas into the processing chamber to form a plasma and desorbing reaction products of the adhesion layer and the film to be processed using particles and vacuum ultraviolet light in the plasma; and a fourth step of expelling the reaction products while the plasma is not formed.
    Type: Application
    Filed: February 19, 2015
    Publication date: March 17, 2016
    Inventors: Miyako MATSUI, Kenetsu YOKOGAWA, Tadamitsu KANEKIYO, Tetsuo ONO, Kazunori SHINODA
  • Patent number: 9038567
    Abstract: The object of the invention is to provide a plasma processing apparatus having enhanced plasma processing uniformity. The plasma processing apparatus comprises a processing chamber 1, means 13 and 14 for supplying processing gas into the processing chamber, evacuation means 25 and 26 for decompressing the processing chamber 1, an electrode 4 on which an object 2 to be processed such as a wafer is placed, and an electromagnetic radiation power supply 5A, wherein at least two kinds of processing gases having different composition ratios of O2 or N2 are introduced into the processing chamber through different gas inlets so as to control the in-plane uniformity of the critical dimension while maintaining the in-plane uniformity of the process depth.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 26, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Hiroyuki Kobayashi, Kenji Maeda, Kenetsu Yokogawa, Masaru Izawa, Tadamitsu Kanekiyo
  • Publication number: 20140231015
    Abstract: The object of the invention is to provide a plasma processing apparatus having enhanced plasma processing uniformity. The plasma processing apparatus comprises a processing chamber 1, means 13 and 14 for supplying processing gas into the processing chamber, evacuation means 25 and 26 for decompressing the processing chamber 1, an electrode 4 on which an object 2 to be processed such as a wafer is placed, and an electromagnetic radiation power supply 5A, wherein at least two kinds of processing gases having different composition ratios of O2 or N2 are introduced into the processing chamber through different gas inlets so as to control the in-plane uniformity of the critical dimension while maintaining the in-plane uniformity of the process depth.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Inventors: Hiroyuki KOBAYASHI, Kenji MAEDA, Kenetsu YOKOGAWA, Masaru IZAWA, Tadamitsu KANEKIYO
  • Patent number: 8801951
    Abstract: In a plasma processing method for conducting etching on an object to be processed by generating plasma from depositional gas introduced into a processing chamber and exposing the object to be processed to the plasma in a state in which radio frequency power is applied, the object to be processed is etched under etching conditions that a deposit film on an inner wall of the processing chamber becomes amorphous by repeating a first period during which the object to be processed is exposed to plasma and a second period during which the object to be processed is exposed to plasma and an etching rate is lower as compared with the first period. Consequently, particles due to increase in the number of processed sheets of the object to be processed can be suppressed.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: August 12, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshiharu Inoue, Michikazu Morimoto, Tsuyoshi Matsumoto, Tetsuo Ono, Tadamitsu Kanekiyo, Mamoru Yakushiji, Masakazu Miyaji
  • Patent number: 8795467
    Abstract: A plasma processing apparatus includes a sample stage disposed at a lower part of a processing chamber, a bell jar made of an insulative material constituting an upper portion of a vacuum vessel, a coil antenna disposed outside and around the bell jar to which electric power is supplied so as to generate the plasma in a plasma generating space inside of the bell jar, and a Faraday shield mounted on the bell jar and disposed between an external surface of the bell jar and the coil antenna. A ring shaped member made of an electric conductive material is disposed inside of an inner surface of a ring portion of the processing chamber located below a skirt portion of the bell jar and constitutes a part of the processing chamber. The ring shaped member extends upwardly so as to cover a portion of an inner surface of the bell jar.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 5, 2014
    Assignee: Hitachi High Technologies Corporation
    Inventors: Ryoji Nishio, Ken Yoshioka, Saburou Kanai, Tadamitsu Kanekiyo, Hideki Kihara, Koji Okuda
  • Patent number: 8733282
    Abstract: The object of the invention is to provide a plasma processing apparatus having enhanced plasma processing uniformity. The plasma processing apparatus comprises a processing chamber 1, means 13 and 14 for supplying processing gas into the processing chamber, evacuation means 25 and 26 for decompressing the processing chamber 1, an electrode 4 on which an object 2 to be processed such as a wafer is placed, and an electromagnetic radiation power supply 5A, wherein at least two kinds of processing gases having different composition ratios of O2 or N2 are introduced into the processing chamber through different gas inlets so as to control the in-plane uniformity of the critical dimension while maintaining the in-plane uniformity of the process depth.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 27, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Kobayashi, Kenji Maeda, Kenetsu Yokogawa, Masaru Izawa, Tadamitsu Kanekiyo
  • Publication number: 20140137059
    Abstract: Plasma processing focus ring design arrangements, including: acquiring a surface voltage and a sheath thickness above a surface of the object to be processed, and a surface voltage and a sheath thickness above a surface of the focus ring, by an equivalent circuit analysis; performing 2D plasma and 2D electric field analysis, based on the equivalent circuit analysis; and designing configuration of the focus ring and the processing stage, to achieve a plasma-sheath interface flattening condition by making a sum of a height from a height reference point to a surface of the object and a sheath thickness from the surface of the object to a plasma-sheath interface above the object, equal to a sum of a height from the height reference point to a surface of the focus ring and a sheath thickness from the surface of the focus ring to a plasma-sheath interface above the focus ring.
    Type: Application
    Filed: January 21, 2014
    Publication date: May 15, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Ryoji NISHIO, Tadamitsu KANEKIYO, Yoshiyuki OOTA, Tsuyoshi MATSUMOTO
  • Patent number: 8632637
    Abstract: A plasma processing apparatus is disclosed for minimizing the non-uniformity of potential distribution around wafer circumference. The apparatus includes a focus ring formed of a dielectric, and a conductor or a semiconductor having RF applied thereto. A surface voltage of the focus ring is determined to be not less than a minimum voltage for preventing reaction products caused by wafer processing from depositing thereon. The surface height, surface voltage, material, and structure of the focus ring are optimized so that the height of an ion sheath formed on the focus ring surface is either equal or has a height difference within an appropriate tolerance range to the height of the ion sheath formed on the wafer surface.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 21, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Nishio, Tadamitsu Kanekiyo, Yoshiyuki Oota, Tsuyoshi Matsumoto
  • Publication number: 20130199728
    Abstract: The object of the invention is to provide a plasma processing apparatus having enhanced plasma processing uniformity. The plasma processing apparatus comprises a processing chamber 1, means 13 and 14 for supplying processing gas into the processing chamber, evacuation means 25 and 26 for decompressing the processing chamber 1, an electrode 4 on which an object 2 to be processed such as a wafer is placed, and an electromagnetic radiation power supply 5A, wherein at least two kinds of processing gases having different composition ratios of O2 or N2 are introduced into the processing chamber through different gas inlets so as to control the in-plane uniformity of the critical dimension while maintaining the in-plane uniformity of the process depth.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Inventors: Hiroyuki KOBAYASHI, Kenji MAEDA, Kenetsu YOKOGAWA, Masaru IZAWA, Tadamitsu KANEKIYO
  • Patent number: 8397668
    Abstract: The object of the invention is to provide a plasma processing apparatus having enhanced plasma processing uniformity. The plasma processing apparatus comprises a processing chamber 1, means 13 and 14 for supplying processing gas into the processing chamber, evacuation means 25 and 26 for decompressing the processing chamber 1, an electrode 4 on which an object 2 to be processed such as a wafer is placed, and an electromagnetic radiation power supply 5A, wherein at least two kinds of processing gases having different composition ratios of O2 or N2 are introduced into the processing chamber through different gas inlets so as to control the in-plane uniformity of the critical dimension while maintaining the in-plane uniformity of the process depth.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: March 19, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Kobayashi, Kenji Maeda, Kenetsu Yokogawa, Masaru Izawa, Tadamitsu Kanekiyo
  • Patent number: 8366870
    Abstract: The invention provides a plasma processing apparatus capable of minimizing the non-uniformity of potential distribution around wafer circumference, and providing a uniform process across the wafer surface. The apparatus is equipped with a focus ring formed of a dielectric, a conductor or a semiconductor and having RF applied thereto, the design of which is optimized for processing based on a design technique clarifying physical conditions for flattening a sheath-plasma interface above a wafer and the sheath-plasma interface above the focus ring. A surface voltage of the focus ring is determined to be not less than a minimum voltage for preventing reaction products caused by wafer processing from depositing thereon.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Nishio, Tadamitsu Kanekiyo, Yoshiyuki Oota, Tsuyoshi Matsumoto
  • Publication number: 20130001197
    Abstract: In a plasma processing method for conducting etching on an object to be processed by generating plasma from depositional gas introduced into a processing chamber and exposing the object to be processed to the plasma in a state in which radio frequency power is applied, the object to be processed is etched under etching conditions that a deposit film on an inner wall of the processing chamber becomes amorphous by repeating a first period during which the object to be processed is exposed to plasma and a second period during which the object to be processed is exposed to plasma and an etching rate is lower as compared with the first period. Consequently, particles due to increase in the number of processed sheets of the object to be processed can be suppressed.
    Type: Application
    Filed: August 16, 2011
    Publication date: January 3, 2013
    Inventors: Yoshiharu INOUE, Michikazu MORIMOTO, Tsuyoshi MATSUMOTO, Tetsuo ONO, Tadamitsu KANEKIYO, Mamoru YAKUSHIJI, Masakazu MIYAJI
  • Patent number: 8163652
    Abstract: A plasma processing method using plasma includes steps of applying current to a coil and introducing gas into a processing chamber, applying a bias power that does not generate plasma, applying a source power to generate plasma so that a plasma density distribution is high above an outer circumference of a semiconductor wafer and low above a center of the semiconductor wafer, and forming a shape of a sheath layer having a positive ion space charge directly above the semiconductor wafer so as to be convex in an upper direction from the semiconductor wafer, thereby eliminating foreign particles trapped in a boundary of the sheath layer having a positive ion space charge directly above the semiconductor wafer, generating plasma for processing the semiconductor wafer under a condition different from the conditions of the previous steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 24, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenji Maeda, Tomoyuki Tamura, Hiroyuki Kobayashi, Kenetsu Yokogawa, Tadamitsu Kanekiyo
  • Patent number: 8062473
    Abstract: A plasma processing apparatus includes in a processing chamber, a sample stage, a bell jar, a coil antenna, a Faraday shield, and a gas ring member located below a skirt portion of the bell jar and above the sample stage. The gas ring member supplies a process gas to a plasma generating space inside the bell jar from a gas port disposed on an inner surface of the gas ring member. A ring shaped plate is disposed near a periphery of the Faraday shield and having an inner surface facing and covering along the inner surface of the gas ring member and being spaced from the inner surface of the gas ring member so as to delimit a gap therebetween.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 22, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Nishio, Ken Yoshioka, Saburou Kanai, Tadamitsu Kanekiyo, Hideki Kihara, Koji Okuda
  • Patent number: 8057634
    Abstract: The invention provides a plasma processing apparatus capable of minimizing the non-uniformity of potential distribution around wafer circumference, and providing a uniform process across the wafer surface. The apparatus is equipped with a focus ring formed of a dielectric, a conductor or a semiconductor and having RF applied thereto, the design of which is optimized for processing based on a design technique clarifying physical conditions for flattening a sheath-plasma interface above a wafer and the sheath-plasma interface above the focus ring. A surface voltage of the focus ring is determined to be not less than a minimum voltage for preventing reaction products caused by wafer processing from depositing thereon.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: November 15, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Nishio, Tadamitsu Kanekiyo, Yoshiyuki Oota, Tsuyoshi Matsumoto
  • Publication number: 20110209828
    Abstract: The invention provides a plasma processing apparatus capable of minimizing the non-uniformity of potential distribution around wafer circumference, and providing a uniform process across the wafer surface. The apparatus is equipped with a focus ring formed of a dielectric, a conductor or a semiconductor and having RF applied thereto, the design of which is optimized for processing based on a design technique clarifying physical conditions for flattening a sheath-plasma interface above a wafer and the sheath-plasma interface above the focus ring. A surface voltage of the focus ring is determined to be not less than a minimum voltage for preventing reaction products caused by wafer processing from depositing thereon.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 1, 2011
    Inventors: Ryoji NISHIO, Tadamitsu Kanekiyo, Yoshiyuki Oota, Tsuyoshi Matsumoto
  • Patent number: 7947189
    Abstract: A vacuum processing method includes mounting a sample to be processed on a sample mounting surface on a sample holder placed in a vacuum container whose inside can be depressurized, feeding a processing gas and electric field to a space above the sample holder inside of the vacuum container to generate plasma, and etching films of a plurality of layers laid over the surface of the sample into a predetermined shape. A heat conducting gas is fed between the sample mounting surface and the backside of the sample, and at the same time, the pressure of the heat conducting gas is changed stepwise in accordance with the progress of the processing of the films of a plurality of layers of the sample.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: May 24, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tooru Aramaki, Tsunehiko Tsubone, Tadamitsu Kanekiyo, Shigeru Shirayone, Hideki Kihara