Patents by Inventor Tadashi Kanasaku

Tadashi Kanasaku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10347787
    Abstract: A conductive paste for forming a solar cell electrode, including: a conductive powder containing silver as a main component; glass frit; and an organic vehicle, wherein the glass frit contains tellurium glass frit having tellurium oxide as a network-forming component. The conductive paste of the present invention makes it possible to form a solar cell electrode having a low dependence on firing temperature without causing problems due to fire-through into the substrate, and to thereby obtain a solar cell having good solar cell characteristics.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: July 9, 2019
    Assignees: Shoei Chemical Inc., Heraeus Precious Metals North American Conshohocken LLC
    Inventors: Masami Nakamura, Naoto Shindo, Tadashi Kanasaku
  • Patent number: 10249774
    Abstract: A conductive paste for forming solar cell electrodes that obtains favorable electrical characteristics and sufficient adhesion strength to a substrate. The conductive paste for forming a solar cell electrode includes the following: a tellurium-based glass frit containing 30-70 mol % of tellurium, 15-40 mol % of tungsten, 5-30 mol % of zinc, 0-20 mol % of boron, and 0-10 mol % of zirconium (where a total content of boron and zirconium is greater than 0 mol %) in terms of oxides; a conductive powder having silver as a main component and specific surface area of 0.4 m2/g or more; and an organic vehicle.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: April 2, 2019
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Tadashi Kanasaku, Kousuke Nishimura, Masayuki Kurahashi
  • Patent number: 10084100
    Abstract: A solar cell element containing: a semiconductor substrate; an antireflection film disposed in a first region on one main surface of the semiconductor substrate; and a front surface electrode disposed in a second region on the one main surface of the semiconductor substrate and containing silver as a main component and a tellurium-based glass containing tellurium, tungsten, and bismuth. The solar cell element is manufactured by forming the antireflection film on the one main substrate surface; printing on the antireflection film a conductive paste containing a conductive powder mainly containing silver, a tellurium-based glass frit containing tellurium, tungsten, and bismuth, and an organic vehicle; and disposing the antireflection film in the first region and forming the front surface electrode in the second region, by firing the paste and eliminating the antireflection film positioned under the paste.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 25, 2018
    Assignees: SHOEI CHEMICAL INC., KYOCERA CORPORATION
    Inventors: Masami Nakamura, Naoto Shindo, Tadashi Kanasaku, Junichi Atobe
  • Publication number: 20180033897
    Abstract: The present invention has an object of providing a conductive paste for forming solar cell electrodes that obtains favorable electrical characteristics and sufficient adhesion strength to a substrate. The conductive paste for forming a solar cell electrode includes the followings: tellurium-based glass frit containing 30-70 mol % of tellurium, 15-40 mol % of tungsten, 5-30 mol % of zinc, 0-20 mol % of boron, and 0-10 mol % of zirconium (where a total content of boron and zirconium is greater than 0 mol %) in terms of oxides; conductive powder having silver as a main component and specific surface area of 0.4 m2/g or more; and an organic vehicle.
    Type: Application
    Filed: March 2, 2016
    Publication date: February 1, 2018
    Inventors: Tadashi KANASAKU, Kousuke NISHIMURA, Masayuki KURAHASHI
  • Publication number: 20170352773
    Abstract: A conductive paste for forming a solar cell electrode, including: a conductive powder containing silver as a main component; glass frit; and an organic vehicle, wherein the glass frit contains tellurium glass frit having tellurium oxide as a network-forming component. The conductive paste of the present invention makes it possible to form a solar cell electrode having a low dependence on firing temperature without causing problems due to fire-through into the substrate, and to thereby obtain a solar cell having good solar cell characteristics.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Applicants: SHOEI CHEMICAL INC., HERAEUS PRECIOUS METALS NORTH AMERICA CONSHOHOCKEN LLC
    Inventors: Masami NAKAMURA, Naoto SHINDO, Tadashi KANASAKU
  • Publication number: 20160284889
    Abstract: A conductive paste for a solar cell element front surface electrode that is used to form a front surface electrode of a solar cell element that is provided with a semiconductor substrate, an antireflective film disposed in a first region on one main surface of the semiconductor substrate, and a front surface electrode disposed in a second region on the one main surface of the semiconductor substrate. The conductive paste contains a conductive powder, a mixed glass frit, and an organic vehicle in which the mixed glass frit contains, in the form of mixture, a tellurium-based glass frit containing tellurium, tungsten, and bismuth as essential components and a lead-bismuth-based glass frit that contains lead and bismuth as essential components and that substantially does not contain tellurium.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 29, 2016
    Applicant: Shoei Chemical Inc.
    Inventors: Yuji AKIMOTO, Tadashi KANASAKU, Kousuke NISHIMURA, Yoshio MIURA
  • Patent number: 9064616
    Abstract: A conductive paste includes a conductive powder containing at least one of copper and nickel as a main component, a glass frit, and an organic vehicle, wherein the glass frit is a tellurium-based glass frit that essentially does not contain any lead component and contains tellurium as a network former in an amount of 35 to 70 mol % in terms of oxide, the tellurium-based glass frit containing silver as an essential component. The above conductive paste can provide favorable characteristics and favorably be used in the formation of light-receiving surface electrodes of a solar cell element even when the conductive paste includes one or more of copper and nickel as its conductive component.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: June 23, 2015
    Assignee: Shoei Chemical Inc.
    Inventors: Hiroshi Yoshida, Naoto Shindo, Tadashi Kanasaku, Shoko Masuda
  • Publication number: 20150122326
    Abstract: A solar cell device including an electrode formed by applying a conductive paste containing at least a conductive powder, glass frit and an organic vehicle onto a semiconductor substrate provided with a silicon nitride layer on a surface thereof and firing the applied conductive paste, wherein the electrode has a structure with a front electrode layer containing silver as a main component, a glass layer containing tellurium glass as a main component, and a silicon oxide layer containing plural silver particles precipitated by the firing. The solar cell device is provided with an electrode formed using a conductive paste not containing lead glass and has good solar cell characteristics.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Yuji AKIMOTO, Masami NAKAMURA, Naoto SHINDO, Tadashi KANASAKU
  • Patent number: 8962981
    Abstract: A solar cell device including an electrode formed by applying a conductive paste containing at least a conductive powder, glass frit and an organic vehicle onto a semiconductor substrate provided with a silicon nitride layer on a surface thereof and firing the applied conductive paste, wherein the electrode has a structure with a front electrode layer containing silver as a main component, a glass layer containing tellurium glass as a main component, and a silicon oxide layer containing plural silver particles precipitated by the firing. The solar cell device is provided with an electrode formed using a conductive paste not containing lead glass and has good solar cell characteristics.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 24, 2015
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Masami Nakamura, Naoto Shindo, Tadashi Kanasaku
  • Publication number: 20140008587
    Abstract: A conductive paste includes a conductive powder containing at least one of copper and nickel as a main component, a glass frit, and an organic vehicle, wherein the glass frit is a tellurium-based glass frit that essentially does not contain any lead component and contains tellurium as a network former in an amount of 35 to 70 mol % in terms of oxide, the tellurium-based glass frit containing silver as an essential component. The above conductive paste can provide favorable characteristics and favorably be used in the formation of light-receiving surface electrodes of a solar cell element even when the conductive paste includes one or more of copper and nickel as its conductive component.
    Type: Application
    Filed: April 5, 2012
    Publication date: January 9, 2014
    Inventors: Hiroshi Yoshida, Naoto Shindo, Tadashi Kanasaku, Shoko Masuda
  • Publication number: 20140004649
    Abstract: A conductive paste for forming a solar cell electrode, including: a conductive powder comprising silver as a main component; glass frit; and an organic vehicle, wherein the glass frit contains tellurium glass frit having tellurium oxide as a network-forming component. The conductive paste of the present invention makes it possible to form a solar cell electrode having a low dependence on firing temperature without causing problems due to fire-through into the substrate, and to thereby obtain a solar cell having good solar cell characteristics.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 2, 2014
    Inventors: Masami NAKAMURA, Naoto SHINDO, Tadashi KANASAKU
  • Patent number: 8551368
    Abstract: A conductive paste for forming a solar cell electrode, including: a conductive powder containing silver as a main component; glass frit; and an organic vehicle, wherein the glass frit contains tellurium glass frit having tellurium oxide as a network-forming component. The conductive paste of the present invention makes it possible to form a solar cell electrode having a low dependence on firing temperature without causing problems due to fire-through into the substrate, and to thereby obtain a solar cell having good solar cell characteristics.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 8, 2013
    Assignee: Shoei Chemical Inc.
    Inventors: Masami Nakamura, Naoto Shindo, Tadashi Kanasaku
  • Publication number: 20130167923
    Abstract: A solar cell element containing: a semiconductor substrate; an antireflection film disposed in a first region on one main surface of the semiconductor substrate; and a front surface electrode disposed in a second region on the one main surface of the semiconductor substrate and containing silver as a main component and a tellurium-based glass containing tellurium, tungsten, and bismuth. The solar cell element is manufactured by forming the antireflection film on the one main substrate surface; printing on the antireflection film a conductive paste containing a conductive powder mainly containing silver, a tellurium-based glass frit containing tellurium, tungsten, and bismuth, and an organic vehicle; and disposing the antireflection film in the first region and forming the front surface electrode in the second region, by firing the paste and eliminating the antireflection film positioned under the paste.
    Type: Application
    Filed: October 4, 2011
    Publication date: July 4, 2013
    Inventors: Masami Nakamura, Naoto Shindo, Tadashi Kanasaku, Junichi Atobe
  • Publication number: 20110095240
    Abstract: A conductive paste for forming a solar cell electrode, including: a conductive powder comprising silver as a main component; glass frit; and an organic vehicle, wherein the glass frit contains tellurium glass frit having tellurium oxide as a network-forming component. The conductive paste of the present invention makes it possible to form a solar cell electrode having a low dependence on firing temperature without causing problems due to fire-through into the substrate, and to thereby obtain a solar cell having good solar cell characteristics.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Masami Nakamura, Naoto Shindo, Tadashi Kanasaku
  • Publication number: 20110094578
    Abstract: A solar cell device including an electrode formed by applying a conductive paste containing at least a conductive powder, glass frit and an organic vehicle onto a semiconductor substrate provided with a silicon nitride layer on a surface thereof and firing the applied conductive paste, wherein the electrode has a structure comprising a front electrode layer comprising silver as a main component, a glass layer comprising tellurium glass as a main component, and a silicon oxide layer containing plural silver particles precipitated by the firing. The solar cell device is provided with an electrode formed using a conductive paste not containing lead glass and has good solar cell characteristics.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Inventors: Yuji Akimoto, Masami Nakamura, Naoto Shindo, Tadashi Kanasaku
  • Patent number: 7476342
    Abstract: A resistor composition containing: a lead-free ruthenium-based electrically conductive component, a lead-free glass having a glass basicity (Po value) of 0.4 to 0.9, and an organic vehicle; wherein, MSi2Al2O8 crystals (M: Ba and/or Sr) are present in a thick film resistor obtained by firing this composition. The ruthenium-based resistor composition is capable of forming a lead-free thick film resistor which eliminates harmful lead components from an electrically conductive component and glass, and has superior TCR characteristics, current noise characteristics, withstand voltage characteristics and stability after a heat cycling test over a wide resistance range.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: January 13, 2009
    Assignee: Shoei Chemical Inc.
    Inventors: Tadashi Endo, Hiroshi Mashima, Tadashi Kanasaku, Tetsuya Tanaka, Mikio Yamazoe
  • Patent number: 7431908
    Abstract: Spherical tetragonal barium titanate particles of the present invention have a perovskite crystal structure, an average particle diameter of 0.05 to 0.5 ?m, a particle size distribution ?g of not less than 0.70, and a ratio of Ba to Ti of 0.99:1 to 1.01:1. The spherical tetragonal barium titanate particles exhibit an excellent dispersibility as well as a high denseness, a high purity and excellent permittivity properties.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: October 7, 2008
    Assignee: Toda Kogyo Corporation
    Inventors: Toshiharu Harada, Yuji Mishima, Seiji Okazaki, Haruki Kurokawa, Hidetomo Unemoto, Kazuyoshi Murashige, Manabu Matsumoto, Tadashi Kanasaku
  • Publication number: 20070075301
    Abstract: A resistor composition comprising: a lead-free ruthenium-based electrically conductive component, a lead-free glass having a glass basicity (Po value) of 0.4 to 0.9, and an organic vehicle; wherein, MSi2Al2O8 crystals (M: Ba and/or Sr) are present in a thick film resistor obtained by firing this composition. The ruthenium-based resistor composition is capable of forming a lead-free thick film resistor which eliminates harmful lead components from an electrically conductive component and glass, and has superior TCR characteristics, current noise characteristics, withstand voltage characteristics and stability after a heat cycling test over a wide resistance range.
    Type: Application
    Filed: September 26, 2006
    Publication date: April 5, 2007
    Inventors: Tadashi Endo, Hiroshi Mashima, Tadashi Kanasaku, Tetsuya Tanaka, Mikio Yamazoe
  • Publication number: 20050031533
    Abstract: Spherical tetragonal barium titanate particles of the present invention have a perovskite crystal structure, an average particle diameter of 0.05 to 0.5 ?m, a particle size distribution ?g of not less than 0.70, and a ratio of Ba to Ti of 0.99:1 to 1.01:1. The spherical tetragonal barium titanate particles exhibit an excellent dispersibility as well as a high denseness, a high purity and excellent permittivity properties.
    Type: Application
    Filed: September 13, 2004
    Publication date: February 10, 2005
    Applicant: Toda Kogyo Corporation
    Inventors: Toshiharu Harada, Yuji Mishima, Seiji Okazaki, Haruki Kurokawa, Hidetomo Unemoto, Kazuyoshi Murashige, Manabu Matsumoto, Tadashi Kanasaku
  • Patent number: 6808697
    Abstract: Spherical tetragonal barium titanate particles of the present invention have a perovskite crystal structure, an average particle diameter of 0.05 to 0.5 &mgr;m, a particle size distribution &sgr;g of not less than 0.70, and a ratio of Ba to Ti of 0.99:1 to 1.01:1. The spherical tetragonal barium titanate particles exhibit an excellent dispersibility as well as a high denseness, a high purity and excellent permittivity properties.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 26, 2004
    Assignee: Toda Kogyo Corporation
    Inventors: Toshiharu Harada, Yuji Mishima, Seiji Okazaki, Haruki Kurokawa, Hidetomo Unemoto, Kazuyoshi Murashige, Manabu Matsumoto, Tadashi Kanasaku