Patents by Inventor Tae H. Lee

Tae H. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11617992
    Abstract: Ceramic proton-conducting oxide membranes are described herein, which are useful for separating steam from organic chemicals under process conditions. The membranes have a layered structure, with a dense film of the perovskite over a porous composite substrate comprising the perovskite material and a metallic material (e.g., Ni, Cu, or Pt). The perovskite comprises an ABO3-type structure, where “A” is Ba and “B” is a specified combination of Ce, Zr, and Y. The perovskite ceramic materials described herein have an empirical formula of Ba(CexZr1-x-nYn)O3-?, wherein 0<x<0.8 (e.g., 0.1?x?0.7 or 0.2?x?0.5); and 0.05?n?0.2; and ?=n/2. In some embodiments n is about 0.2. In some other embodiments 0.6?x?0.8; and n is about 0.2, such as Ba(Ce0.7Zr0.1Y0.2)O3-?, also referred to herein as BCZY712.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 4, 2023
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Tae H. Lee, Uthamalingam Balachandran
  • Publication number: 20220250010
    Abstract: Ceramic proton-conducting oxide membranes are described herein, which are useful for separating steam from organic chemicals under process conditions. The membranes have a layered structure, with a dense film of the perovskite over a porous composite substrate comprising the perovskite material and a metallic material (e.g., Ni, Cu, or Pt). The perovskite comprises an ABO3-type structure, where “A” is Ba and “B” is a specified combination of Ce, Zr, and Y. The perovskite ceramic materials described herein have an empirical formula of Ba(CexZr1-x-nYn)O3-?, wherein 0<x<0.8 (e.g., 0.1?x?0.7 or 0.2?x?0.5); and 0.05?n?0.2; and ?=n/2. In some embodiments n is about 0.2. In some other embodiments 0.6?x?0.8; and n is about 0.2, such as Ba(Ce0.7Zr0.1Y0.2)O3-?, also referred to herein as BCZY712.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Tae H. LEE, Uthamalingam BALACHANDRAN
  • Publication number: 20210245112
    Abstract: A mixed matrix membrane comprises a support structure. The support structure comprises a glassy polymer matrix, and nanodiamond particles dispersed within the glassy polymer matrix. A gas separation membrane apparatus, a gaseous fluid treatment system, and a method of forming a mixed matrix membrane are also described.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 12, 2021
    Inventors: Frederick F. Stewart, Christopher J. Orme, John R. Klaehn, Birendra Adhikari, Olga Aleksandrovna Shenderova, Nicholas Austin Nunn, Marco D. Torelli, Gary Elder McGuire, Tae H. Lee, Uthamalingam Balachandran
  • Publication number: 20210121449
    Abstract: The present invention relates to novel derivatives of oxazolidinone, a method thereof and pharmaceutical compositions comprising the derivatives for use in an antibiotic. The oxazolidinone derivatives of the present invention show inhibitory activity against a broad spectrum of bacteria and lower toxicity. The prodrugs, prepared by reacting the compound having hydroxyl group with amino acid or phosphate, have an excellent efficiency on solubility thereof against water. Further, the derivatives of the present invention may exert potent antibacterial activity versus various human and animal pathogens, including Gram-positive bacteria such as Staphylococi, Enterococci and Streptococi, anaerobic microorganisms such as Bacteroides and Clostridia, and acid-resistant microorganisms such as Mycobacterium tuberculosis and Mycobacterium avium. Accordingly, the compositions comprising the oxazolidinone are used in an antibiotic.
    Type: Application
    Filed: June 8, 2020
    Publication date: April 29, 2021
    Inventors: Jae K. Rhee, Weon B. Im, Chong H. Cho, Sung H. Choi, Tae H. Lee
  • Patent number: 10843261
    Abstract: A method for making covetic metal-nanostructured carbon composites or compositions is described herein. This method is advantageous, in that it provides substantially oxygen-free covetic materials and allows precise control of the composition of the covetic material to be produced. The method comprises introducing carbon into a molten metal in a heated reactor under low oxygen partial pressure, while passing an electric current through the molten metal. The reactor is heated at a temperature sufficient to form a network of nanostructured carbon within a matrix of the metal. After heating the covetic material is recovered from the reactor.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 24, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Uthamalingam Balachandran, Beihai Ma, Tae H. Lee, Stephen E. Dorris, David R. Forrest
  • Publication number: 20200176573
    Abstract: A method for preparing a covetic, nanocarbon-infused, metal composite material is described is herein. The method comprises heating a stirring molten mixture of a metal (e.g., Cu, Al, Ag, Au, Fe, Ni, Pt, Sn, Pb, Zn, Si, and the like) and carbon (e.g., graphite) at a temperature sufficient to maintain the mixture in the molten state in a reactor vessel, while passing an electric current through the molten mixture via at least two spaced electrodes submerged or partially submerged in the molten metal. Each of the electrodes has an electrical conductivity that is at least about 50 percent of the electrical conductivity of the molten mixture at the temperature of the molten mixture. Preferably, the conductivity of the electrodes is equal to or greater than the conductivity of the molten mixture.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Inventors: Uthamalingam BALACHANDRAN, Stephen E. DORRIS, Beihai MA, Tae H. LEE, David R. FORREST, Christopher Klingshirn
  • Publication number: 20200078345
    Abstract: The present invention relates to novel derivatives of oxazolidinone, a method thereof and pharmaceutical compositions comprising the derivatives for use in an antibiotic. The oxazolidinone derivatives of the present invention show inhibitory activity against a broad spectrum of bacteria and lower toxicity. The prodrugs, prepared by reacting the compound having hydroxyl group with amino acid or phosphate, have an excellent efficiency on solubility thereof against water. Further, the derivatives of the present invention may exert potent antibacterial activity versus various human and animal pathogens, including Gram-positive bacteria such as Staphylococi, Enterococci and Streptococi, anaerobic microorganisms such as Bacteroides and Clostridia, and acid-resistant microorganisms such as Mycobacterium tuberculosis and Mycobacterium avium. Accordingly, the compositions comprising the oxazolidinone are used in an antibiotic.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: Jae K. Rhee, Weon B. Im, Chong H. Cho, Sung H. Choi, Tae H. Lee
  • Publication number: 20190381563
    Abstract: A method for making covetic metal-nanostructured carbon composites or compositions is described herein. This method is advantageous, in that it provides substantially oxygen-free covetic materials and allows precise control of the composition of the covetic material to be produced. The method comprises introducing carbon into a molten metal in a heated reactor under low oxygen partial pressure, while passing an electric current through the molten metal. The reactor is heated at a temperature sufficient to form a network of nanostructured carbon within a matrix of the metal. After heating the covetic material is recovered from the reactor.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Uthamalingam BALACHANDRAN, Beihai MA, Tae H. LEE, Stephen E. DORRIS, David R. FORREST
  • Publication number: 20180344716
    Abstract: The present invention relates to novel derivatives of oxazolidinone, a method thereof and pharmaceutical compositions comprising the derivatives for use in an antibiotic. The oxazolidinone derivatives of the present invention show inhibitory activity against a broad spectrum of bacteria and lower toxicity. The prodrugs, prepared by reacting the compound having hydroxyl group with amino acid or phosphate, have an excellent efficiency on solubility thereof against water. Further, the derivatives of the present invention may exert potent antibacterial activity versus various human and animal pathogens, including Gram-positive bacteria such as Staphylococi, Enterococci and Streptococi, anaerobic microorganisms such as Bacteroides and Clostridia, and acid-resistant microorganisms such as Mycobacterium tuberculosis and Mycobacterium avium. Accordingly, the compositions comprising the oxazolidinone are used in an antibiotic.
    Type: Application
    Filed: August 3, 2018
    Publication date: December 6, 2018
    Inventors: Jae Keol Rhee, Weon B. Im, Chong H. Cho, Sung H. Choi, Tae H. Lee
  • Patent number: 10128046
    Abstract: The invention provides a process for making ceramic film capacitors, the process comprising supplying a flexible substrate, depositing a first electrode on a first region of the flexible substrate, wherein the first electrode defines a first thickness, overlaying the first electrode with a dielectric film; and depositing a second electrode on the ceramic film, wherein the second electrode defines a second thickness. Also provided is a capacitor comprising flexible substrate, a first electrode deposited on said flexible substrate, a dielectric overlaying the first electrode; and a second electrode deposited on said dielectric.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: November 13, 2018
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran, Stephen E. Dorris, Tae H. Lee
  • Patent number: 9842695
    Abstract: A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300° C.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: December 12, 2017
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Ralph S. Taylor, Manuel Ray Fairchild, Uthamalingam Balachjandran, Tae H. Lee
  • Publication number: 20170330685
    Abstract: A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300° C.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 16, 2017
    Inventors: Ralph S. Taylor, Manuel Ray Fairchild, Uthamalingam Balachandran, Tae H. Lee
  • Publication number: 20170198493
    Abstract: An improved concealed screw handleset for a door is described. The handleset assembly has a handleset, a mounting plate, and a face plate. The handleset and mounting plate are fastened together on opposite sides of the door via one or more assembly screws. The assembly screws are inserted from the mounting plate side of the door and are not visible from the handleset side of the door. The faceplate mounts on the mounting plate via two threaded collars. The faceplate completely covers the mounting plate and the assembly screws. In this manner, the handleset assembly provides a concealed screw design that is very easy to assemble and install. In other aspects, the mounting plate has a rotatable stem for mounting a turn-piece. The stem has one or more catches to hold the turn-piece in different positions.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 13, 2017
    Inventors: Ronald DeGoutiere, Tae H. Lee
  • Patent number: 9692075
    Abstract: The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: June 27, 2017
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Tae H. Lee, Stephen E. Dorris, Uthamalingam Balachandran
  • Publication number: 20160153084
    Abstract: The invention provides a dielectric-conductive substrate construct comprising a conductive material having a first surface and a second surface, and a dielectric film directly contacting the first surface and substantially covering the first surface, wherein the second surface is exposed to the ambient environment. Also provided is a method for producing a two component dielectric-conductive substrate, the method comprising supplying a base metal; and directly contacting a ceramic to the base metal to form a ceramic-metal interface while simultaneously preventing the formation of electrically insulative layers at the interface.
    Type: Application
    Filed: September 17, 2014
    Publication date: June 2, 2016
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran, Stephen E. Dorris, Tae H. Lee
  • Publication number: 20150364257
    Abstract: The invention provides a process for making ceramic film capacitors, the process comprising supplying a flexible substrate, depositing a first electrode on a first region of the flexible substrate, wherein the first electrode defines a first thickness, overlaying the first electrode with a dielectric film; and depositing a second electrode on the ceramic film, wherein the second electrode defines a second thickness. Also provided is a capacitor comprising flexible substrate, a first electrode deposited on said flexible substrate, a dielectric overlaying the first electrode; and a second electrode deposited on said dielectric.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 17, 2015
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran, Stephen E. Dorris, Tae H. Lee
  • Patent number: 8585807
    Abstract: A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 19, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Tae H. Lee, Chan Young Park, Yunxiang Lu, Stephen E. Dorris, Uthamalingham Balachandran
  • Publication number: 20130081540
    Abstract: A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: UCHICAGO ARGONNE, LLC.
    Inventors: Tae H. Lee, Chan Young Park, Yunxiang Lu, Stephen E. Dorris, Uthamalingam Balachandran
  • Patent number: 7959716
    Abstract: A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 14, 2011
    Assignee: UChicago Argonne, LLC
    Inventors: Sun-Ju Song, Tae H. Lee, Ling Chen, Stephen E. Dorris, Uthamalingam Balachandran
  • Patent number: D700035
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: February 25, 2014
    Assignee: Copper Creek, Inc.
    Inventors: Ron deGoutiere, Tae H. Lee